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‘The reactions and the attitudes with respect to such complexity
are linked between two extremes: on the one hand there is the per-
son who identifies as the sole possible solution to the problem a
meticulous treatment of every process operating on the...system; on
the other hand there is the person who sees the only hope as lying
in “guessing” the right equations.’ 
(G. Puppi and A. Speranza)

1. INTRODUCTION

One of the most important and least understood features of complex sys-
tems is the persistent re-occurrence of abrupt overall changes, called ‘critical
transitions’ or ‘critical phenomena’. At the applied level they are referred to
as crises, catastrophes, and disasters. In this paper I will consider hierar-
chical dissipative complex systems, which play an important role in the
global village. Among such systems are the Earth’s crust, prone to geological
disasters, which in turn trigger ecological and socio-economic catastrophes;
the economy, prone to depressions; society, prone to bursts of large-scale vio-
lence; the mega-city, on its way to self-inflicted collapse; etc.

As in the case of the study of gravity at the time of T. Brahe and J.
Kepler, the study of such systems is at the ‘pre-equation stage’: the heuris-
tic search for major regularities necessary for the development of a funda-
mental theory. At this stage, prediction is necessary to achieve a funda-
mental understanding of the system, as well as to reach the practical goal
of being prepared for disasters.
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The problem. Complex systems are not predictable with absolute preci-
sion in the Laplacean sense. However, after a coarse-graining (averaging),
the regular behaviour patterns emerge; among them are scenarios of the
development of critical transitions. The problem of prediction – the focus
of this paper – is then posed as a consecutive, step-by-step reduction of the
time-space domain, where a critical transition has to be expected (Keilis-
Borok, 1996, 1990, 1999). At each step we consider the system at different
levels of averaging, in a ‘holistic’ approach – from the whole to details.
Coarse-graining limits the accuracy of prediction, but it remains important
at a practical level (Molchan, 1990, 1991, 1997). 

The division into consecutive approximations is dictated by the stage-
by-stage development of critical transitions (Kossobokov et al., 1999). At the
same time this division corresponds to the needs of disaster preparedness
(Kantorovich and Keilis-Borok, 1991).

A more specific version of this problem is reviewed here. Consider the
dynamics of a system. Let t be the current moment in time, m – the scale
(‘magnitude’) of a critical transition. Given the behaviour of the system
prior to t, our problem is to decide whether a critical transition with magni-
tude m>m0 will occur or not during the subsequent time interval (t, t+∆). In
other words, we have to localise in time-space a specific singular trait of the
process. This formulation is considerably different from a more traditional
one – the extrapolation of a process in time. The decision rule is called the
prediction algorithm (an example is described in 2.3.2).

The dual nature of critical transition. The phenomena precursory to crit-
ical transitions were first encountered in seismicity, where the critical tran-
sitions are strong earthquakes (Keilis-Borok ed., 1990). Mathematical mod-
elling and the analysis of real data show that these phenomena are partly
‘universal’, common to complex systems with different origins. Against this
background the system-specific precursors emerge.

Relevance to statistical physics. The premonitory seismicity patterns
discussed below are qualitatively reminiscent of the asymptotic behaviour
of a system near the point of phase transition of the second kind. However,
our problem is unusual for statistical physics: we do not consider the equi-
librium state but the growing disequilibrium, which culminates in a criti-
cal transition.

Raw data include the observable background (‘static’) activity of the sys-
tem and the external factors affecting it. Examples of the static are small
earthquakes; variations in macroeconomic indicators; flow of misde-
meanors; etc. The static in hierarchical systems may include critical transi-
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tions of a smaller magnitude, which form their own hierarchy (Holland,
1995); the same phenomenon may be regarded as a part of the static for the
whole system and as a critical transition for some part of the system. 

Pattern recognition. Having to be heuristic, the data analysis is based
on the ‘pattern recognition of infrequent events’ – the methodology devel-
oped by the school of I. Gelfand (Gelfand et al., 1976). It allows us to over-
come the complexity and imprecision of the data in situations where the
data are insufficient for more traditional statistical analysis.

The performance of a prediction algorithm is quantitatively charac-
terised by the rate of false alarms, the rate of failures to predict, and the
total volume of alarms (see 2.3.2). The trade-off between these characteris-
tics is summed up by error diagrams. They also provide an interface
between prediction and preparedness (Molchan, 1997, Kantorovich and
Keilis-Borok, 1991).

Validation: (‘with four exponents I can fit the elephant’, E. Fermi).
Inevitably, in the absence of adequate fundamental equations there is some
freedom in the design of a prediction algorithm. The validation of the algo-
rithms, taking a lion share of the efforts, involves the following three stages:1

(i) ‘Sensitivity analysis’: Retrospective check as to whether the perform-
ance is insensitive to variations in the raw data and in adjustable numeri-
cal parameters. 

(ii) ‘Out of sample’ retrospective evaluation of performance through
independent data not used in the design of the algorithm.

(iii) Advance prediction – the only decisive test of a prediction algorithm. 

Content. Section 2 describes the recently developed model of colliding
cascades propagating in hierarchical chaotic systems (Gabrielov et al.,
2000a, 2000b, 2001, Zaliapin et al., 2001a, 2001b). This is one of the lattice
models of a statistical physics type intensely used in the study of critical
transitions. We here consider that specific model because it exhibits a wide
set of known precursors to a critical transition (Keilis-Borok, ed., 1990,
1999) and some unknown precursors to be tested by observation. The next
two sections demonstrate prediction of the real (observed) critical transi-
tions. Section 3 discusses earthquakes. Section 4 deals with economic reces-
sions and unemployment.

1 Each algorithm described below was validated at the first two stages and tested by
advance prediction. Hereafter this point will not be repeated, so as to avoid monotonous
repetitions.
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2. COLLIDING CASCADES

The model of colliding cascades (Gabrielov et al., 2000a, 2000b, 2001,
Zaliapin et al., 2001a, 2001b) summarises the three major factors responsi-
ble for the generation of critical transitions in complex systems.

(i) The hierarchical structure. Specifically we consider the ternary tree
shown in Fig. 1a.

(ii) ‘Loading’ by external sources. The load is applied to the largest ele-
ment and transferred downwards, thus forming direct cascades.

(iii) The ‘Failures’ of the elements under the load. The failures start from
the smallest elements and gradually expand upwards the hierarchy, thus
forming inverse cascades. A broken element eventually ‘heals’’, which
ensures the continuous operation of the system.

Cascades are realised through the interaction of adjacent elements, as
shown in Fig. 1b. Direct and inverse cascades collide and interact: loading
triggers the failures, while failures release and redistribute the load. The
dynamics of the model are described in Gabrielov et al., 2000a.

Figure 1. Structure of the colliding cascades model. a) Three highest levels of the hier-
archy. b) Interaction with the nearest neighbors. [After Gabrielov et al. 2000b].

(a)

(b)
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Fig. 2 shows an example of the sequence of failures. What is the rele-
vance of this sequence (and of the whole model) to reality? The answer is
that it fits the major heuristic constraints, derived from earthquake studies,
and exhibits still unknown regularities, which can be tested through obser-
vation [acc, roc].

Separately, the cascades of each type have been intensely studied in
many fields. Among classical examples are the direct cascades of eddies in
the three-dimensional turbulent flow (Kolmogoroff, 1941a, 1941b, Frish,
1995), and inverse cascades in percolation (Stauffer and Aharony, 1992).
Pioneering lattice models of seismicity (Burridge and Knopoff, 1967, Bak et
al., 1988, Allégre et al., 1982) have been focused on the inverse cascades.
This paper concerns a much less explored phenomenon – the interaction of
direct and inverse cascades. It has also been considered in a model of mag-
netic field reversals (Blanter et al., 1999).

Figure 2. Synthetic earthquake sequence generated by the colliding cascades model. The
complete sequence is shown in the top panel; exploded views - in the following three
panels. [After Gabrielov et al. 2000b].
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3. EARTHQUAKES

2.1. Definitions

To interpret colliding cascades in terms of seismicity, we associate the
loading with the impact of tectonic forces, and the failures with earth-
quakes. The simplest standard representation of an observed earthquake
sequence is 

{tk, mk, gk}, k = 1, 2,... (1).

Here, tk is the occurrence time of an earthquake; mk is its magnitude,
i.e. logarithmic measure of energy released by the earthquake; gk indicates
coordinates of the hypocenter; and k is the sequence number of an earth-
quake, tk � tk+1 .

Identifying the failures in the model with the real (observed) earth-
quakes, we regard m as the magnitude; this is a natural analogy since the
size of the rupture that originates a real earthquake is strongly correlated
with magnitude. The position of an element in the tree is regarded as a
hypocenter; this is an admittedly coarse analogy, since, strictly speaking,
the model has no Euclidean hypocenter space.

2.2. Heuristic constrains

Synthetic sequence of failures, shown in Fig. 2, exhibits, upon averaging,
the major regular features of observed seismicity: seismic cycles, intermitten-
cy, scale invariance, and a specific kind of clustering (Gabrielov et al., 2000a,
2000b, 2001). (The reader will recognize also a qualitative similarity with
many other processes, e.g. the dynamics of an economy). In the next section
we describe one more constraint, central for the problem of prediction: the set
of the spatio-temporal patterns of seismicity preceding a strong earthquake.

(i) Seismic cycles. Our synthetic sequence is dominated by easily iden-
tifiable cycles, each culminating in a major earthquake. A single cycle is
shown in the bottom panel of Fig. 2. It comprises three consecutive phas-
es (Scholz, 1990): an increasing level of seismic activity culminating in
one or several major earthquakes; gradual decline of activity; and period
of low activity, eventually followed by the next cycle.

(ii) Intermittency of seismic regime. From time to time the sequence of
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cycles abruptly changes its basic features: maximal magnitude, degree of
periodicity, and duration of separate cycles (compare for example three
intervals: 100-500, 1000-1200 and 1500-1700 in the top panel of Fig. 2).

(iii) Scale invariance. Typically for complex systems with persistent crit-
ical transitions, the distribution of the magnitude of earthquakes follows
the power law, known in seismology as the Gutenberg-Richter relation: 

dN(m) ~ 10- bm dm (2),

with the value of b being constant in considerable magnitude ranges
(Gutenberg and Richter, 1954, Molchan and Dmitrieva, 1990, Turcotte, 1997,
Kagan, 1999). This relation emerges after a sufficient averaging over territo-
ry and time. Fig. 3 shows that synthetic seismicity does follow this law (per-
haps too perfectly); this is partly predetermined by the design of the model.

(iv) Clustering. Real earthquakes are clustered in time and space. The
clustering is hierarchical, taking place in different scales. A most prominent
type of clusters consists of a main shock, closely followed by a decaying
sequence of weaker aftershocks. Also, about 30% of main shocks are close-

Figure 3. Magnitude distribution, log N(m) = a - bm, N(m) is the number of events with
magnitude m. Note that the magnitude has discrete integer values from 1 to 7. a) All
events. b) Main shocks. c) Aftershocks. [After Gabrielov et al. 2000b].
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ly preceded by few weaker foreshocks (Molchan and Dmitrieva, 1990). The
modeled sequence does exhibit the aftershocks as well as some other forms
of clusters (Gabrielov et al., 2000a). As in reality, the slope b in the distri-
bution (2) is steeper for the aftershocks than for the main shocks (Fig. 3).

2.3. Premonitory seismicity patterns

2.3.1. Three types of premonitory phenomena. Studies of observed and
modeled seismicity show that an earthquake of magnitude m0 is preceded
by certain patterns of seismicity in an area and magnitude range normalized
by m0 . Specifically, these patterns reflect the following changes in seismici-
ty (Keilis-Borok, 1994, 1996, Turcotte, 1997, Sornette and Sammis, 1995):

(i) Rise in the earthquakes’ clustering in space and time.
(ii) Rise in the intensity of the earthquakes’ flow.
(iii) Rise in the range of correlations between the earthquakes.

Premonitory patterns of the first two types belong to heuristic con-
strains for the model. They have been found mainly by the analysis of
observations and are used in the intermediate-term earthquake prediction
algorithms, with characteristic duration of alarms years (Keilis-Borok, ed.,
1990, 1999). The third type of patterns has been found very recently in the
CC model (Gabrielov et al., 2000a, 2000b, 2001), although it was previous-
ly hypothesized in (Keilis-Borok 1994, 1996).

2.3.2. General scheme of prediction (Gabrielov et al., 1986, Keilis-
Borok, ed., 1990, Keilis-Borok and Shebalin, eds., 1999).

(i) Areas. The territory considered is scanned by overlapping areas; their
size is normalised by the magnitude m0 of the earthquakes targeted by pre-
diction.

(ii) Functionals. An earthquake sequence in each area is described by a
time function F(t), depicting the premonitory changes of seismicity (see
2.3.1). Each type of change can be depicted by different functionals (for
example; the clustering of the earthquakes may be measured by the gener-
ation of aftershocks and by the swarms of main shocks). 

The functionals are also normalised by m0.
(iii) Premonitory patterns. The emergence of a premonitory pattern in

the area considered is recognised by the condition
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F(t) ≥ CF (3).

The threshold CF is an adjustable parameter. It is usually defined as a
certain percentile of the functional F.

(iv) Prediction algorithms. An algorithm based on a single pattern is for-
mulated as follows. Whenever F(t) > CF, an alarm is declared for a time peri-
od ∆F in the area considered. The prediction is correct if an earthquake with
a magnitude belonging to the range (m0, m0 + c) occurs in that area and
time interval; the opposite case is a false alarm. A failure to predict is the case
where a major earthquake occurs outside of an alarm area and period. 

Performance of an algorithm is quantitatively defined by three parame-
ters: the rate of false alarms, the rate of failures to predict, and the total
space-time, occupied by the alarms.

Most of the algorithms of that kind are based not on one but on several
premonitory patterns. An alarm is declared when certain combinations of
the patterns emerge (Gabrielov et al. 1986; Keilis-Borok, ed., 1996; Keilis-
Borok & Shebalin 1999).

(v) Robustness. A highly complex process (an earthquake sequence) is
described in this analysis by the few averaged functionals, which in turn are
defined at the lowest (binary) level of resolution – above or below certain
threshold. Predictions themselves are also binary, of a ‘yes or no’ kind, with
unambiguous definition of the area and duration of alarm. The probabilis-
tic aspect of prediction is reflected in the errors diagram, showing the
tradeoff between the parameters characterising the performance of a pre-
diction method (see item (iv) above).

Such robustness, usual in the exploratory data analysis (Gelfand et al.,
1976; Tukey, 1977), allows us to overcome the high complexity of the
process considered and the chronic incompleteness of the data. This is
achieved at a price, however: the limited accuracy of prediction.

2.3.3. Application to synthetic seismicity

The colliding cascades model reproduces the whole set of premonitory
patterns described above. Prediction algorithms, based on each pattern,
have been applied to synthetic earthquake sequence, as shown in Fig. 2
(Gabrielov et al., 2000b). Prediction was targeted at the 25 ‘major earth-
quakes’, with m = 7. For the patterns of the first two types, depicting clus-
tering and level of seismic activity, we used the a priori definitions, devel-
oped in the analysis of observations (Keilis-Borok ed., 1990). For the pat-
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terns of the new type, depicting correlation range, we used definitions
developed in (Gabrielov et al., 2000a). 

Fig. 4 summarises the performance of these patterns. The top panel
shows, in separate boxes, the emergence of the patterns before each major
earthquake. The bottom panel shows the false alarms. Evidently, most of
them are close to the earthquakes with a magnitude of m=6.

2.3.4. Applications to real seismicity

Premonitory patterns of the first two kinds have been subjected to tests
by advance prediction worldwide by scientists from Russia, the USA,

Figure 4. Collective performance of premonitory patterns. Prediction is targeted at the first
12 major events (m=7) from synthetic sequence shown in Fig. 2. Figure juxtaposes alarms
generated by all 17 precursors considered in Gabrielov et al. 2000b. The patterns ROC and
Accord reflect correlation range, the patterns ∑ and N – seismic activity, the pattern B –
clustering (Gabrielov et al. 2000a, 2000b). The top panel shows, in separate boxes, emer-
gence of precursors before each of major earthquakes in the synthetic sequence. The right
edge of each box is the moment of a major earthquake. The time interval of three units is
considered before each one. The bottom panel shows the alarms determined during the
time periods when strong earthquakes did not occur; those are the false alarms. Vertical
lines show the moments of events with magnitude m = 6. Evidently, m = 6 events are asso-
ciated with most of the false alarms. Each row shows the track record of a single precur-
sor. Shaded areas show the alarms determined by the precursor. Values of m indicate the
magnitude range in which a precursor is determined. [After Gabrielov et al. 2000b].



VLADIMIR I. KEILIS-BOROK418

France, Italy, and New Zealand; the tests, unprecedented in rigor and vol-
ume, established the high statistical significance of predictions (Molchan
1990; Kossobokov et al., 1999; Vorobieva 1999; Harte et al. 2000 and refer-
ences therein), though the probability gain is low so far, between 3 and 10.
Among those predicted were 7 out of the last 8 strongest earthquakes, of
magnitude 8 or more.2

Patterns of the third type have yet to be validated by observations. The
first applications to observed seismicity, in S. California (Zaliapin et al.
2000) and Lesser Antilles (Shebalin et al. 2000), are encouraging.

Figs. 5-7 illustrate the predictions described above. Figure 5 shows suc-
cessful prediction of the Sumatera earthquake M = 8 (Fig. 5, see p. XI). Figure
6 shows prediction of the second strong earthquake – Northridge – which fol-
lowed the Landers earthquake within two years. Figure 7 depicts similarity
of premonitory seismicity patterns preceding the Aquaba earthquake and a
major starquake – the flash of energy radiated by a neutron star in the form
of soft �-rays repeaters (Kossobokov et al. 2000) (Fig. 7, see p. XI).

3. RECESSIONS AND UNEMPLOYMENT

The lattice models used in the studies of seismicity (Burridge and
Knopoff, 1967; Turcotte, 1997; Rundle et al., 2000; Gabrielov and Newman,
1994; Shnirman and Blanter, 1999; Huang et al., 1998), the colliding cascade
model included, are not necessarily specific to seismicity only. The notions
central in such models – hierarchy, loading, failures, and healing – might be
interpreted in terms of different complex processes.3 Here, we describe the
application of similar approach to socio-economic predictions (Keilis-Borok
et al., 2000a, 2000b; Lichtman and Keilis-Borok, 1999; Lichtman, 1996).

3.1. American economic recessions

Each of the five recessions which have occurred in the USA since 1962
was preceded by a specific pattern of 6 macroeconomic indicators deter-
mined in Keilis-Borok et al., 2000a. This pattern emerged within 5 to 13

2 Results of that test are routinely available on the website: http://www.mitp.ru
3 Hypothetically, we encounter in the studies reviewed here an ‘arithmetic’ of critical

transitions – the basic precursory phenomena, common for a wide class of complex sys-
tems. However, if that is true, the universality is not unlimited: in the background of ‘uni-
versal’ precursors the system-specific ones do emerge (Keilis-Borok, ed., 1990, 1999).
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months before each recession and at no other time, suggesting a hypothet-
ical prediction algorithm. It has been put to the test by advance prediction
beginning in 1996. Since then no more recessions have occurred, up to
April 2001, when this is paper is being written, the algorithm has generat-
ed no alarms. 

3.1.1. Raw data. The following routinely available monthly macroeco-
nomic indicators have been analysed: 

1. The difference between the interest rate on ten-year U.S. Treasury
bonds, and the interest on federal funds on an annual basis.

2. The ‘Stock-Watson index’ of overall monthly economic activity. This
is a weighted average of four measures, depicting employment, manufac-
turing output, and retail sales, which emphasise services.

3. The index of ‘help wanted’ advertising. This is put together by a pri-
vate publishing company which measures the amount of job advertising
(column-inches) in a number of major newspapers.

4. The average weekly number of people claiming unemployment
insurance.

5. Total inventories in manufacturing and trade, in real dollars. This
includes intermediate inventories (for example held by manufacturers, ready

Figure 6. Prediction of the second strong earthquake. The Landers earthquake (28 June,
1992 M 7.6) was followed by the Northridge earthquake (17 January, 1994, M 6.8). The
circle in the figure shows the territory, pointed by the algorithm, where occurrence of
the second strong earthquake should be expected. [After Vorobieva, 1999].
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to be sent to retailers) and final goods inventories (goods on shelves in stores).
6. The interest rate on ninety-day U.S. Treasury bills at an annual rate.

These indicators happen to be sufficient for prediction; other potential-
ly relevant indicators have not yet been considered in this approach.

3.1.2. Hypothetical premonitory patterns. The premonitory behaviour of
each indicator was defined (see 2.3.2) by a robust binary condition (3). An
example is shown in Fig. 8a (see p. XII). It was found that the following pat-
terns of the above indicators are premonitory, emerging more frequently as
a recession approaches: a low value of indicator 1; a strong downward trend
of indicators 2 and 5; and a strong upward trend of the three other indica-
tors. Qualitatively, this would be expected from the nature of each indicator. 

A hypothetical prediction algorithm based on these patterns generated
retrospective alarms, juxtaposed with recessions in Fig. 8b (see p. XII). In
the advance prediction such performance would be quite satisfactory. 

Comparison with the more traditional multiregression analysis is sum-
marised in Sect. 4 below.

3.2. Unemployment

Here, we summarise the study (Keilis-Borok et al., 2000b) of the pre-
diction of unemployment in Western Europe and USA. The targets of pre-
diction are the formally defined episodes of a sharp increase in the rate of
unemployment, named ‘FAUs’, ‘Fast Acceleration of Unemployment’. The
FAUs in France, Germany, Italy, and USA since the early sixties have been
considered. Most of them are preceded by a uniform pattern of three
macroeconomic indicators. A hypothetical prediction algorithm based on
these patterns is put to the test by advance prediction. 

3.2.1. Raw data. The algorithm is based on the following three indica-
tors, selected to start with from many relevant ones: 

1. The industrial production index, composed of weighted production lev-
els in numerous sectors of the economy, in % relative to the index for 1990.

2. The long-term interest rate on ten-year government bonds.
3. The short-term interest rate on three-month bills.

3.2.2. The hypothetical premonitory pattern. Most of the FAUs consid-
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ered are preceded by a steep increase of all three indicators. The corre-
sponding (hypothetical) prediction algorithm has been developed for
France and then applied to Germany, Italy and USA. The alarms deter-
mined by that algorithm are juxtaposed with FAUs in Fig. 9 (see p. XII).
Such results would be quite satisfactory in real time prediction, and
encourage the further tests of an algorithm. So far, only one prediction, for
the USA, was made in advance (Fig. 10). An alarm was determined for the
period from February to November 2000 (a shaded area in Fig. 10) and
unemployment did start to rise in July 2000.

4. SUMMARY

1. The following findings seem promising:

– In each case the prediction rule was uniform, transcending the
immense complexity of the process considered, the diversity of the predic-
tion targets, and the change of circumstances in time. For the earthquakes,
premonitory seismicity patterns happen to be similar for microcracks in
laboratory samples, the largest earthquakes of the world, in the energy
range from 10-1 erg to 1026 erg; possibly, also, for ruptures in a neutron star,
1041erg. For recessions and unemployment, similarity overcomes the
changes in the economy since 1962; in the case of FAUs, the differences
between countries as well. 

Figure 10. Unemployment rate in the U.S., July 2000: thin curve shows original data;
thick curve show the rates with seasonal variations smoothed out. The gray bar shows
the alarm period, defined by analysis of microeconomic indicators. The black bar – actu-
al start of the unemployment rise, defined by analysis of monthly unemployment rates
for the U.S. civilian labor force.
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– Prediction was based on the routinely available data - global cata-
logues of earthquakes, major macroeconomic indicators, etc. 

– In each case, predictability was achieved by extremely robust analy-
sis. It is interesting to quote how an economist with an excellent track
record in the prediction of recessions describes his impressions of such a
robustness: ‘Prediction of recessions...requires fitting non-linear, high-
dimensional models to a handful of observations generated by a possibly
non-stationary economic environment...The evidence presented here sug-
gests that these simple binary transformations of economic indicators
have significant predictive content comparable to or, in many cases, bet-
ter than that of more conventional models.’ J.Stock, from Keilis-Borok et
al., 2000a.

The accuracy of prediction is limited. However, only a small part of rel-
evant models and available data was used, so that a wealth of possibilities
for better prediction remains unexplored. 

2. A similar approach was successfully applied to the prediction of pres-
ident and mid-term senatorial elections in the USA (Lichtman and Keilis-
Borok, 1989; Lichtman, 1996).

3. Although, obviously, neither a panacea, nor an easy ride are implied,
the approaches, discussed here, open up reasonable hope that we can break
the current stalemate in disaster prediction.

4. The studies summarised here involve the cooperation of about twen-
ty institutions in twelve countries and several international projects. Still,
this review is not intended to be encyclopedic and covers a specific part of
the much broader effort.
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Figure 5. Successful advance prediction of the Southern Sumatera earthquake (4 June
2000, magnitude Ms = 8.0). The alarm areas in the first (M8 algorithm) and the second
(MSc algorithm) approximations are highlighted by yellow and red respectively. [From
the web site: http://www.mitp.ru].

Figure 7. Similarity of premonitory seismicity patterns in Aquaba gulf (panel b) and on
neutron star (panel a). Top - sequence of events. Major ones are shown by a star: Aquaba
earthquake, 1995, energy ~ 1023 erg and the starquake recorded in 1983, energy ~ 1041 erg.
Other boxes show premonitory patterns used in earthquake prediction. S depicts the
change in energy distribution, N – the rate of earthquake occurrence, L – its deviation from
long term trend, Z – concentration of events in space, B – clustering in space and time. Dots
show the values, exceeding a standard threshold. [After Kossobokov et al. 2000].
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Figure 8. Prediction of US recession by premonitory patterns of 6 macroeconomic indi-
cators. a) Each index I(t) is replaced by its binary representation S(t). Here I(t) is the dif-
ference between the interest rate on short-term and long-term bonds. When I(t)>0 S(t)=1
(typical before recessions). When I(t) < 0, S(t) = 0. b) Performance of hypothetical pre-
diction algorithm: an alarm is declared for 9 months when 4 or more indicators signal
approach of a recession.

Figure 9. Prediction of fast acceleration of unemployment (FAU). Precursor is the steep
rise of three national macroeconomic indicators. Red vertical lines – moments of FAU.
Blue bars – periods of alarms. Green bars – false alarms. Gray areas on both sides – peri-
ods, for which the economic indicators were unavailable.




