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I was asked to make a short presentation on trends and directions in
mathematics.

Mathematics has become a vast subject, with different techniques and
scientific values. Even in a confined area like fluid dynamics, the same sub-
ject, say the Navier-Stokes equation, has a different connotation for differ-
ent research groups (compressible versus incompressible, formation of sin-
gularities, zero viscosity limits, etc.)

I have chosen therefore to:
a) Stay very close to my area of expertise, non-linear analysis, partial

differential equations and applied mathematics, where I could better pres-
ent the issues.

b) More than a determined aspect or evolution of a theory, to discuss
several examples of a trend that I feel will have enormous importance in my
area of mathematics, as well as in our relation to the rest of the sciences.

The main theme of my examples will be that science and engineering
are requiring the development of very sophisticated mathematical theories.

The enormous computational capabilities that are becoming available
year after year have allowed scientists not only to look at more detailed
models of existing physical phenomena, but also to be able to simulate
complex materials and processes to optimize their design properties.

The first area I would like to discuss concerns mathematical develop-
ment in image treatment (storage, enhancing, and compression). For sim-
plicity, a black and white image simply means to provide a function (the
grey scale) that may be piecewise smooth with sharp transitions, or dotted
with very fine dots, or blurred and imprecise. Nevertheless, the eye has a
special ability in grouping the essential features of it and reconstructing
out of it a familiar image.
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The first development that I would like to discuss is the theory of wavelets,
which has to do with a way of extracting from a picture its detail up to a given
level, and allowing us to reconstruct it (see Pictures 1, 2, and 3 Brushlets).

In trying to do so, there are two conflicting interests, very common in
physics and mathematics sciences: size and oscillation, i.e. the choice
between intensity and contrast.

Mathematically, this means having to choose between an approxima-
tion that averages in space, or one that averages in frequencies.

Averaging in space (a finite element discretization, for instance) will
lose the detail in the oscillations; averaging in frequencies loses the local
spatial detail. The representation of a function as a superposition of sines
and cosines (the computation of the Fourier coefficients) depends globally
on the function, although it attempts to represent it pointwise.

The compromise solution has been the development of wavelet theory.
Wavelets are bases families of elementary profiles for decomposing func-
tion, intensity in our case, that are localized simultaneously in space and
frequency.

In fact, they are telescopic both in space and frequencies, in the sense
that they are:

a) Layered in space. There is a layer of size one, one of size 1/2, 1/4,
1/8, etc.

b) Layered in frequencies: they are mostly concentrated between fre-
quencies 1 and 2, 2 and 4, 4 and 8, etc. (In fact they can all be constructed by
translating and diadically shrinking a single profile, the wavelet) (Picture 4).

Wavelet theory has found deep applications not only in image com-
pression but also in fluid dynamics, as well as classic harmonic analysis.

The other mathematical tool developed due to the needs of image treat-
ment concerns geometric deformation and evolution.

In the same way that wavelets address an issue of multiple scales, geo-
metric deformations address an issue of multiple models (Pictures 5 and 6:
plane and geometric picture).

The issue is: given a blurred or a spotted, noisy image, how can it be
grouped in order to make it a recognizable object. The idea, a classic one,
borrowed from phase transition theory, is to assign to every configuration
an energy that combines its closeness to the given, disorganized image and
its degree of “organization”. (For instance, if it is a curve enveloping a
region, its length.)

Next, one lets the configuration “flow” towards its energy minimum.
For instance, a curve will evolve trying to minimize a combination of its
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Picture 1 – 8:1 Compression

Picture 2 – 16:1 Compression Picture 3 – 128:1 Compression

Pictures 1, 2, 3 – Brushlet Pictures. Yale Wavelet Computational Group.
http://www.math.yale.edu:80/YCM
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Picture 4.
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Picture 5 – Results for a very noisy image, with the initial curve not surrounding the
objects. Top: u0 and the contour. Bottom: the piece-wise constant approximation of u0.

Picture 6 – An Active Contour Model without Edges

Pictures 5, 6 – Chan, Tony F. and Luminita A. Vese. “Active Contours without Edges.”
IEEE Transactions on Image Processing.
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length and the intensity it encloses. When one tries to do that, singularities
arise, and as the structure of the “approximate” configuration deteriorates,
it is necessary to go to a higher model. For instance, a “field theory model”
that adds “artificial viscosity” or diffusivity to the surface movement, to
resolve the singularities.

For computational purposes we have thus a multi-model theory, where
in areas of “normal” evolutions we use simpler geometric evolution, but
couple them with higher complexity models to resolve singularities in the
flow. The issue is, of course, when to use each model and how to couple
them.

The issue of matching different models is a very important one; we will
see another example later.

Next, there are two examples that come from continuous mechanics
and one is multiscale, the other is multi-model.

The multi-scale concerns homogenization (see Pictures 7 and 8).
Typical examples of homogenization are composite materials, or flows
through layered rock formations.

Fluid or gas through a porous media, for instance, can be studied at sev-
eral scales: at a few centimeters scale, the structure of the pore and the cap-
illary properties of the fluid enter into consideration. At a few meters
important factors are soil layers, large cracks, etc.

The interest, though, centers mainly on trying to simulate reservoirs at
kilometer scales.

One must, therefore, model the interplay of each of the scales. At a kilo-
meter scale, for instance, flow laws are much simpler, but the parameters
(effective constants) or the non-linearities in these laws depend heavily on
the small-scale behavior. Homogenization appears in many areas: elastici-
ty, crack propagation, etc; and involves very sophisticated tools of non-lin-
ear analysis and probability theory.

The last example comes independently both from aerospace engineer-
ing and semiconductor design. In terms of aerospace engineering, a typical
example of the problem can be described as follows: a jet fired in an atmos-
phere of very low density goes from a very compressed regime to a very low
density one in a length of a few meters.

According to its local density or density gradient there are several clas-
sical models of gas dynamics.

The continuous model, where densities are relatively high and shocks
are weak, assumes that the gas moves locally in a coherent fashion, that is,
there is locally a bulk velocity, one of our unknowns responsible for the flow.
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Picture 7 – The centers of the 2000 fibers in 15 crossections 50 �m apart. All these cen-
ters are depicted in the figure which shows the movement of the fibers in the z-direction.

Picture 8 – Model problem for a unidirectional composite.

Pictures 7, 8 – Babuska, Ivo, Borje Andersson, Paul J. Smith, and Klas Levin. “Damage analysis
of fiber composites.” Computer methods in applied mechanics and engineering. 172 (1999) 27-77.
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For lower densities, when particles spend a non-negligible time travel-
ing before hitting each other, there are transport models where at each
point in space there is a density of particles having a given velocity vector
(so now, your ambient space is position and velocity) and colliding laws are
prescribed.

Finally, there is always a basic computational model, called the
Montecarlo simulation: just give a bunch of particles, with initial position
and velocity, prescribe a “bouncing” law and see how they evolve by fol-
lowing each one of them (Picture 9).

This is, of course, the closest model to the “truth”, but computationally
very restrictive, so the issue is to use it only in those regimes where previ-
ous approximations fail.

How to match these three models is a central issue in continuum
mechanics, since obviously the Montecarlo method is a simple fundamen-
tal way of modeling from granular dynamics to charged particle flows in
semiconductor devices, but one would like to (correctly) transform it into
transport or continuum approximations whenever possible.

The mathematical issue is, then, as density increases, what is the sim-
plest proper transport model corresponding to a “bouncing” law, and fur-
ther for higher local densities, the simplest proper continuum (hydrody-
namic) model corresponding to the transport one. And, of course, how to
couple different regimes (Pictures 9, 10, and 11, see p. I).
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Pictures 9, 10, 11 – Roveda, Roberto, David B. Goldstein, and Philip L. Varghese. “A com-
bined Discrete Velocity/Particle Based Numerical Approach for Continuum/Rarefied
Flows.” AIAA Paper 97-1006, Reno, NV, January 1997, (see p. I).
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