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Lattice QCD

Lattice field theory was invented by Wilson (1974) to try to explain how the strong force, described
by Quantum Chromodynamics (QCD), binds quarks permanently into the observed hadrons. He
replaced space-time by a regular four-dimensional lattice with quark fields at the sites and gluon fields
on the links between neighbouring sites, retaining the local gauge invariance of the theory at the sites.
This controls the infinities of the quantum field theory by defining it as the zero-lattice-spacing, or
“continuum”, limit of the lattice theory. The number of degrees of freedom is proportional to the
number of sites and hence is finite on a finite-volume lattice, permitting physical quantities to be
computed within a fully controlled approximation, if the volume is large enough. QCD is
“asymptotically free” — its beta function is negative and has a fixed point at zero gauge coupling the
existence of which can be established using perturbation theory, and, because of this, tuning the gauge
coupling to zero reduces the lattice spacing to zero relative to any physical scale, such as the size of a
hadron. Thus, dimensionless ratios of physical quantities become insensitive to the lattice spacing and
equal to their continuum values in this limit. Of course, the volume of the lattice must be kept larger
than any of the important physical scales as this limit is taken, which means that the number of lattice
sites and the computational cost grow, actually very rapidly. There are many ways of formulating
lattice QCD so that the correct continuum theory is recovered. It is sufficient to ensure that the lattice
theory either retains QCD’s essential symmetries (e.g. gauge invariance), or breaks them in ways that
vanish in the continuum limit (e.g. Lorentz invariance). Lattice QCD is now so well underpinned
theoretically that it is widely accepted as the best way to define QCD.

Lattice QCD explains the confinement of quarks inside hadrons when the gauge coupling (and hence
the lattice spacing) is large, because the potential energy of a static quark-antiquark pair grows
linearly with their separation. It has not yet been established that this property remains true in the
continuum limit. However, lattice QCD did not become a viable tool for computing the properties of
hadrons until Creutz, Jacobs and Rebbi (1979) realised that the path integral in Euclidean space-time
could be estimated by computer simulation using Monte Carlo methods. It has taken over 30 years of
effort developing the theory, algorithms and computer technology to reach the point today where we
can compute the values of many hadron masses and matrix elements for continuum QCD to a
precision of a few percent and start to confront experimental measurements. For most practical
purposes, QCD can now be solved from first principles, although the computations are enormously
demanding and many are still too expensive. This will change as computer performance continues to
increase exponentially for problems of this type. The lattice approach can be applied to other quantum
field theories and there has been a surge of interest in applying it to possible models of electroweak
symmetry breaking in anticipation of discoveries at the LHC. All that is needed is an understanding of
how to realise the symmetries of the continuum theory correctly and a fixed point at which to define
the continuum limit. However, neither is guaranteed to be easy for any particular theory.
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The Origin of Mass

Asymptotic freedom of QCD enables us to use perturbation theory to determine how physical
quantities, such as hadron masses, depend on the lattice spacing when this is small (because then the
coupling is also small). All quantities with dimensions can be expressed as a computable number
times the appropriate power of a fixed energy scale, Aqcp, which is related to the inverse of the lattice
spacing (the “cut-off”) by a factor that becomes exponentially small at small coupling. If we imagine
QCD to be embedded in a more complete theory, so that new physics enters when the lattice spacing
reaches a small enough value, the energy scale of this new physics can be much larger than Agcp and,
consequently, the masses of hadrons. Thus, asymptotic freedom explains why hadrons can be “light”
compared, say, to the Planck mass.

Computer simulation of lattice QCD may be used to compute the numbers that relate physical
quantities to Aqcp, or, equivalently, dimensionless ratios of physical quantities. The first such
calculation of the nucleon mass by Hamber and Parisi (1981) obtained 950+100 MeV. This illustrates
the challenge for the field — to decide whether QCD is correct requires reducing the uncertainties in
such calculations to something comparable to the experimental uncertainty. Hamber and Parisi did not
correctly include the effects of virtual quark loops (or “sea quarks”), but it was not until 1998 that CP-
PACS announced at the annual Lattice Conference that this gives the wrong result for the nucleon
mass and other light hadron masses (Aoki et al., 2000). Ten years later, the light hadron spectrum
computed in 2+1 flavour QCD (i.e., including all the effects of u, d and s quarks, with u and d
assumed to be degenerate in mass so that isospin is an exact symmetry) was shown to agree with
experiment to within a few percent (Diirr et al., 2008). The inputs to this computation are the observed
masses of the (isospin averaged) pion, kaon and E baryon, used to fix the average u and d mass, the s
mass and the scale — the quark masses in the simulation are varied until the computed ratios of the
pion to E baryon masses and the kaon to E baryon masses match experiment. In this way, the quark
masses are determined.

Since the masses of the # and d quarks turn out to be only a few MeV, roughly 99% of all the visible
mass in the Universe is, therefore, explained as the binding energy of QCD. It remains for us to
understand the origin of the masses of the quarks, leptons, electroweak gauge bosons and,
presumably, the Higgs. Lattice QCD enables precision determination of the quark masses, which is an
important first step towards understanding their origin. Today’s QCD simulations typically include u,
d, s and ¢ quarks in the isospin-symmetric limit for the sea quarks. Isospin breaking and QED eftects
are included for the valence quarks to account, at least approximately, for the mass difference of the
neutron and proton. The current world averages for the light quark masses obtained this way are
(Laiho et al., 2010)

m, =2.09+£0.09 MeV, m,;=4.73£0.11 MeV, m,=93.6+1.1 MeV.

The result for the u quark rules out the possibility that it is massless and, consequently, that this could
be an explanation for the “strong CP problem”. Evidently, lattice QCD has not only established that
QCD is a good description of hadrons at low energies, but also that it can be used to determine
precisely otherwise inaccessible parameters of the Standard Model.

The Search for Physics Beyond the Standard Model

In the absence of the discovery of new particles, the search for new physics is proceeding through
tests of the Standard Model. Lattice QCD is starting to provide a tool of sufficient precision to
confront predictions of the Standard Model with experiment and to seek discrepancies. The focus of
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this search is flavour physics, because the existence of only three generations of quarks and leptons,
inherent in the Standard Model, imposes a constraint on the parameters which specify the strengths of
the mixings between different quark flavours. Like the quark masses, these parameters, or “CKM
matrix elements”, are inputs to the Standard Model, presumably originating in some more
fundamental underlying theory, and they must be inferred from experimental measurements. If there
are only three generations, the 3x3 CKM mixing matrix must be unitary — a statement that the
probabilities of all possible mixings of a given flavour must add up to one and a set of “unitarity
triangle” constraints. It is possible that new physics violates these constraints and this can be observed
if we can determine the mixing parameters precisely enough. Also, like the quark masses, since the
quark mixings can only be observed in hadronic processes, QCD effects must be computed to extract
the mixing parameters from experimental measurements. The strength of these tests of the Standard
Model then depends on our ability to reduce the uncertainties of both the computations and the
experiments. Until recently, the computational uncertainties dominated. As the precision of lattice
QCD calculations of hadronic matrix elements steadily improves, this situation is changing.

Our most stringent test of CKM unitarity is for the mixing of the u quark with d, s and b quarks. The
mixing with the b quark is so tiny that it can be ignored. The other two mixing parameters can be
determined from kaon semileptonic decays (using the computed form factor at zero momentum
transfer), and kaon and pion leptonic decays (using the computed ratio of the decay constants), where
there are reliable lattice QCD computations of the hadronic decay matrix elements from both 2
flavour (degenerate u and d quarks only in the sea) and 2+1 flavour (i, d and s quarks) simulations.
The former have larger systematic uncertainties, but both give values for the mixing parameters that
satisfy the unitarity constraint (at the level of 4% and 2% respectively). Taking the ud mixing from
the more precisely measured nuclear beta decay confirms CKM unitarity at the per mille level
(Colangelo et al., 2011).

The progress achieved over the past 20 years in lattice QCD computations of hadronic weak matrix
elements is nicely illustrated by By, the matrix element needed to extract the size of CP violation in
the Standard Model from measurements of neutral kaon mixing (Lunghi & Soni 2011). A crucial
feature of CKM mixing in the Standard Model is that CP violation is determined by a single
parameter. Thus, the same value should be obtained from kaon and from B meson decays. The
construction of the two B-Factories in the 1990s was motivated in large part by this test of the
Standard Model. So the beautiful experimental measurements of B mixing to an accuracy of a few
percent that were achieved could only impact the underlying theory if By could be computed to a
similar precision. Early lattice QCD results in the 1990s using the quenched approximation (no sea
quarks) were comparable to those using non-lattice methods, obtaining values for the (renormalisation
group invariant) matrix element around 0.70+0.10, but with no control over the systematic error. In
the last five years, simulations with 2+1 flavours have achieved remarkable consistency in the central
value and a steady reduction in the uncertainty, so that the current world average is 0.74+0.02.

Using the most reliable lattice QCD results available today (specifically, excluding results for the cb
and ub mixing parameters obtained from inclusive and exclusive semileptonic b decays, because they
differ by around 2c), the unitarity triangle, whose area is proportional to the size of CP violation,
exposes a 3o tension in the CKM matrix. If this is due to new physics, then it seems predominantly to
affect B mixing (Laiho et al., 2010, Lunghi & Soni 2011).

The central role that lattice QCD is now playing in the search for new physics is due to the 30 years of
effort understanding the theoretical formulation, improving the algorithms and speeding up computer
performance finally paying off. So we now have full control over all sources of uncertainty for some
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phenomenologically important matrix elements and consistent results for them from different lattice
formulations providing an independent check. We can expect the range of computable matrix
elements to grow and the uncertainties in the results to reduce as the methodology and computer
performance continue to improve.

Thermodynamics and the Quark-Gluon Plasma

Lattice field theory provides a theoretical laboratory in which we can explore the properties of QCD
with different choices for its quark content. This has been exploited in the historical development by
starting with a model in which only valence quarks are present (the “quenched approximation”),
which substantially reduces the computational cost. Subsequently, at growing cost and edging ever
closer to the Standard Model, two degenerate quark flavours were included in the sea, then 2+1
flavours (the 2 referring to degenerate u and d quarks), until today most simulations include 2+1+1
flavours of sea quark with isospin breaking effects incorporated in the valence quarks. These
simulations may be performed at zero or non-zero temperature, enabling us to map out the phase
diagrams. Unfortunately, the Monte Carlo algorithm fails at non-zero baryon chemical potential, so
this region of the phase diagram is not accessible (yet) to direct simulation.

The phase structure is sensitive to the sea-quark content, although we have had to learn this the hard
way. The temperature of the transition from the confining to the quark-gluon plasma phase turns out
to be close to my, so it is essential to include the s quark in the sea, requiring at least 2+1 flavour
simulations. (In fact, there is not a sharp transition, but rather a smooth cross-over between the two
phases.) This is one reason why QCD thermodynamics has proved to be a harder problem than the
computation of the zero-temperature spectrum and matrix elements (another is that zero-temperature
results are needed as input to set the scale and quark masses). Furthermore, most non-zero
temperature studies have used the staggered-quark formulation, which has additional copies of the
quark flavours in the sea, called “tastes”, that decouple only in the continuum limit. The effects of
tastes at non-zero lattice spacing can be reduced by modifying the staggered-quark action. After some
initial discrepancies, results for the transition temperature and other properties derivable from the
equation of state, such as the speed of sound and the pressure, obtained with different formulations are
now converging. A typical result for the transition temperature is 7, = 15449 MeV (Bazavov et al.,
2012).

The goal of lattice QCD thermodynamics is to obtain a precise determination of the equation of state
of QCD over the temperature range of 150 — 700 MeV that is being explored by experiments at RHIC
and the LHC. Along with the determination of the transition temperature and transport coefficients,
this will enable us to parametrise hydrodynamical models describing the quark-gluon plasma. The
inclusion of the ¢ quark in simulations is likely to be necessary at high temperatures, and these can be
expected to follow close behind the zero-temperature 2+1+1 flavour simulations currently underway.

Dynamical Electroweak Symmetry Breaking

While the idea that electroweak symmetry is broken by the condensation of techniquarks, which feel a
new technicolor gauge interaction, simply replicates what already happens to a limited extent in QCD,
extending this to give masses to the quarks runs into trouble — the scale of the technicolor theory, Arc,
is either too big to generate the heavy-quark masses, or too small that it generates flavour-changing
neutral current (FCNC) interactions in contradiction with experiment. A popular solution is to seek a
technicolor gauge theory whose dynamics is different from QCD, being governed by a beta function
that has an infrared stable (i.e. “conformal’) fixed point at non-zero gauge coupling. A suitable choice
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of techniquark content and masses should destabilise this fixed point so that, between two scales, the
gauge coupling is trapped close to the fixed-point value and stops running, a property called
“walking”, before eventually running down to zero as in QCD. This dynamics introduces two scales: a
high scale which generates acceptably small FCNCs and a low scale that generates big enough quark
masses.

Lattice field theory is the only first-principles method available to search for fixed points at non-zero
coupling. The challenge is that the set of possible technicolor theories is huge and, for each gauge
group, there are many choices for the techniquark content (a classification of theories based on an
approximate beta function provides a guide, see Sanino 2009). Simulating each specific choice is
computationally demanding even with the most powerful algorithms developed for QCD. So work has
so far concentrated on the simplest gauge groups, SU(2) and SU(3), for which efficient simulation
codes already exist, and has varied the fermion content looking for a zero of the beta function. Since
staggered fermions provide efficient implementations of theories with multiples of four flavours in the
fundamental representation, the most systematic studies have been carried out for 8, 12 and 16
fundamental flavours with an SU(3) gauge group. This has established that the 16-flavour theory has a
conformal fixed point, the 8-flavour theory does not, while the 12-flavour theory remains
controversial, with the balance in favour of a conformal fixed point (Hasenfratz, 2010 and 2012).

Thus, these simulations are providing some encouragement for “walking” technicolor to be a viable
theory of dynamical electroweak symmetry breaking. Of course, there is not a shred of experimental
evidence yet that Nature exploits this possibility. If we are to explain electroweak symmetry breaking
through some underlying strong dynamics, computer simulation of lattice field theory is likely to be
the only technique available to us, both to construct the theory and to extract predictions that can be
used to confront experiment. The computational cost of doing this will far exceed that which has been
required for QCD, because we will not have asymptotic freedom and perturbation theory to guide our
approach to the continuum limit.

Computers for Lattice Field Theory

The progress achieved in lattice QCD is generally ascribed equally to advances in algorithms and in
computer technology. While the former is hard to plan for in the future, technological advances are
expected to continue for the next ten years at the exponential “Moore’s Law” rate that we have
benefited from for the past 50 years. Throughout its history, lattice QCD, more than any other
application area, has driven the development of the most powerful supercomputers. This is because
the translational symmetry and local interactions of the lattice theory make the simulations very
efficient to implement on parallel computers. Also the balance between computations and memory
accesses in lattice QCD turns out to be a good design target for machines to support a wide range of
scientific applications. Thus, we have seen computers designed and built specifically for lattice QCD,
design elements from them incorporated into commercial machines, and lattice QCD codes used to
optimise performance of and to stress-test commercial systems.

This concept of “co-design”, in which the computer architecture, its system software, the algorithm
and application software are all developed together, has been adopted as the plan for the next big step
in supercomputer performance from the current petascale to exascale (10" operations per second).
This is expected to be accomplished around 2018, by scaling up today’s machines with hundreds of
thousands of computational units operating in parallel, to systems with hundreds of millions, even
billions. Memory access rates will be unable to keep pace and energy requirements will have to be
driven down dramatically to keep operating costs at an acceptable level. This will be a huge
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engineering challenge and, even for lattice QCD, it will not be straightforward to exploit exascale
systems efficiently. The key point, though, is that computer performance should not present a
limitation on lattice field theory, at least for the first decade of the LHC.

Prospects for the LHC Era

After 30 years of sustained effort to develop the theoretical formulation, speed up algorithms and
build faster computers, lattice QCD has reached the point where it is delivering high-precision,
model-independent results for a growing range of phenomenologically important quantities, in which
all sources of uncertainty are under control and can be systematically reduced further. In flavour
physics tests of the Standard Model, a combination of efforts to drive down both theoretical and
experimental uncertainties is putting the Standard Model under increased stress and has already
exposed a 3o tension in the B meson sector. Independent of the discovery of new particles at the LHC,
this work will tighten the constraints on Standard Model processes and will very likely expose areas
where new physics is necessary.

Lattice simulations of QCD thermodynamics are reaching a similar point of sophistication, where the
lattice approximations are fully under control. This should permit reliable determinations of a wide
range of thermodynamic and transport properties of the quark-gluon plasma phase that will guide our
interpretation of heavy-ion experiments. A major theoretical challenge remains to find a way to
simulate QCD at non-zero baryon density to explore the properties of cold dense nuclear matter.

Beyond QCD, lattice field theory offers the only known way to understand strong dynamics which is
not controlled by a perturbatively accessible fixed point and yet may explain electroweak symmetry
breaking. Computationally, this will require a major step up in our capabilities, because we will not
have perturbation theory to provide a guide. Fortunately, there is no end in sight to the exponential
growth of computer power. With the full discovery potential of the LHC also yet to be realised, the
only limit to our understanding further how Nature works at the most fundamental level will be our
own ingenuity.
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