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Abstract

Some aspects of black holes in supersymmetric theories of gravity are re-
viewed and some recent results outlined.
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1 Introduction

Black holes are perhaps the most misterious and fascinating outcome of Ein-
stein’s theory of General Relativity (A. Einstein, 1880-1952 ). This theory
was the result of a deep intuition on the implications of the equivalence prin-
ciple, whilst trying to merge Newton’s Law of gravitation with general rela-
tivistic covariance. Its mathematical formulation was then realized in terms
of Riemannian geometry of space-time (B. Riemann, 1826-1866 ). Nowadays
black holes are predicted by fundamental candidate theories of Quantum
Gravity like Superstring or M-Theory and they are observed in the sky as
relics of collapsing stars. They seem to encompass many of the mysteries
of the evolution of our Universe from its creation to its final destiny, the
so-called Big Crunch, or its eternal existence, namely an endless expansion.

Astrophysical black holes have huge masses, typically of the order of mag-
nitude of the solar mass scale, 2 × 1030 Kg, while Quantum Gravity black
holes have tiny masses, of the order of the Planck mass scale, namely 2×10−8

Kg. note that this is still much bigger than the typical mass of the atomic
nuclei, that is from one to ten proton masses (the mass of a proton being
1.6× 10−27 Kg).

Supergravity black holes are the black holes of the superworld [1]. Super-
symmetry requires that they are extremal, that is that they have vanishing
temperature, are marginally stable but carry Entropy. Actually, the black-
hole Entropy makes a bridge between classical gravity and Quantum Gravity.
In fact, we recall that the macroscopic definition of the black-hole entropy
(Bekenstein – Hawking Entropy) [2, 3] connects its value to the black-hole
horizon area AH :

Smacro
BH =

kBc
3

G~
1

4
AH (1.1)

The microscopic definition of the black-hole entropy, instead, relates its value
to the number Nmic of microstates of the quantum system underlying the
black hole, namely:

Smicro
BH = kB ln(Nmic) (1.2)

Remarkably these formulae, computed with appropriate approximations, give
the same result in Superstring Theory [4].

From now on, we generally use Natural Units, where c = ~ = G = kB = 1.
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2 What is the Superworld?

In order to understand what Superworld is, one first has to introduce the
notion of Superspace [6, 7]. This is a geometrical entity which extends the
notion of Riemannian manifold to that of Supermanifold. A point on a D-
dimensional Riemannian manifold MD, endowed with a Lorentz signature
(H. A. Lorentz, 1853-1928 ), is identified by giving numerical coordinates xµ,
(µ = 1, · · · , D). To identify a point in a Supermanifold we need, besides
the coordinates xµ, also a set of Grassmann (H. Grassmann, 1809-1877 )
anticommuting coordinates θα (α = 1, · · · , 2[D/2]) with two basic properties:

1. θαθβ = −θβθα
which implies nilpotency: θ2α = 0;

2. They transform as spinors (E. Cartan, 1869-1951, H. Weyl, 1885-1955 )
under the action of the Lorentz group and their properties are related
to modules of Clifford Algebras (W. K. Clifford, 1845-1879 ) and to the
Spin Group, namely the universal covering group of the D-dimensional
Lorentz group [5].

Superworld is the physical entity corresponding to the mathematical con-
cept of supermanifold, whose environment is not ordinary space but super-
space. The group of motion in Superspace is supersymmetry, as much as the
group of motion in ordinary space-time is the Poincaré group (H. Poincaré,
1854-1912 ). An infinitesimal supersymmetry transformation with spinorial
parameter εα acts on the coordinates of superspace as follows:

xµ → xµ + iε̄α(γµ)α
βθβ ⇔ δxµ = iε̄α(γµ)α

βθβ (2.1)

θα → θα + εα ⇔ δθα = εα (2.2)

where γµ is a matrix satisfying the Clifford Algebra and ε̄ denotes the Dirac
conjugate spinor, namely ε̄ = ε†γ0. Commuting twice the action of such
transformations with parameters ε1 and ε2 respectively, one finds that xµ

undergoes an infinitesimal translation:

[δ1, δ2]x
µ = 2iε̄α2 (γ

µ)α
βε1β . (2.3)

The supersymmetry algebra is a graded Lie algebra [8] (S. Lie, 1842-1899 )
with basic anticommutator: [9, 10, 11]

{Qα, Q̄β} = 2(γµC)αβpµ (2.4)
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where the supersymmetry generators Qα are Majorana spinors (E. Majorana,
1906-1938 ) and C denotes the charge-conjugation matrix.

The supergroup associated to the supersymmetry algebra acts on a super-
manifold, denoted by Mb,f ≡ MD,2[D/2] , where b and f denote the number of
bosonic and fermionic coordinates respectively. the total (graded) dimension
of a supermanifold is b + f . As we will see in the following, the maximal
possible number of coordinates of superspace is bmax = 11, fmax = 32.

Actually, one can extend the super Lie algebra by introducing N super-
symmetry generators QαI (I = 1, · · · , N) acting on an N -extended super-
space labeled by N Grassmannian spinor coordinates θαI . The basic anti-
commutators now become

{QαI , Q̄
J
β} = 2(γµC)αβpµδ

J
I (2.5)

{QαI , QβJ} = εαβZIJ (2.6)

where ZIJ are “central terms” which commute with all the rest of the super-
algebra, including the Lorentz generators. It is precisely the presence of the
central charges ZIJ which makes it possible the existence of supersymmetric
Black Holes, as will be shown in the next section.

The interaction in the superworld are described by supersymmetric the-
ories. It is remarkable that such theories may encompass gauge interactions,
in particular Yang–Mills theories [12, 6], as well as gravitational interactions.
In the latter case, the corresponding theory is called supergravity [13, 14].
However these theories exist only for few values of the number N of super-
symmetries and of the space-time dimension D [15, 16]. In particular, Super
Yang–Mills theories in D = 4 require 1 ≤ N ≤ 4 and at most they live in
D = 10 [17]. On the other hand supergravity theories at D = 4 require
1 ≤ N ≤ 8 and at most they live in D = 11 dimensions [18].

3 From Schwarzschild to Reissner–Nordström:

The case of extremal Black Holes.

The celebrated Black-Hole solution of pure Einstein theory looks, in a chosen
frame of spherical coordinates

ds2Schw = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (3.1)
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where M denotes the ADM mass, that is the total energy of the black-hole
configuration. The naked singularity at r = 0 is covered by the event horizon
at r = 2M . By event horizon we mean a surface where the gravitational red-
shift is infinite, that is where the time intervals undergo an infinite dilation
with respect to a distant observer. This is also a singularity of the metric but
it is only a coordinate singularity which can be removed with an appropriate
choice of coordinates, while the singularity at r = 0 is a real singularity of
the theory, that is independent of the reference frame.

The generalization of the Schwarzschild solution to an electrically charged
black hole in the Einstein–Maxwell theory is given by the Reissner–Nordström
black hole, whose metric reads:

ds2RN = −
(
1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2dΩ2 (3.2)

Here M denotes the ADM mass and Q the electric charge of the space-
time configuration. Such configuration can be easily generalized for dyonic
configurations where also a magnetic charge P is present by replacing in (3.2)
Q2 with Q2 + P 2. This metric exhibits two horizons, at

r± = M ±
√
M2 −Q2 = M ± r0 (3.3)

where r+ corresponds to the event horizon and r− to the Cauchy horizon,
together with the physical singularity at r = 0.

In cosmology a Cosmic Censorship Principle is postulated (see for exam-
ple [19]. An event horizon should always cover the singularity at r = 0, so
that the singularity be not accessible to an observer external to the event
horizon of the black hole. This can be rephrased by saying that no ”naked”
singularities can exist. For the Reissner–Nordström solution the Cosmic Cen-
sorship principle requires M ≥ Q.

As shown by Steven Hawking, black holes obey laws which are formally
the same as the laws of thermodynamics, after an appropriate identification
of the quantum numbers of the solution is given. In particular, the thermo-
dynamical properties of the black holes relate the area of the event horizon
to the Entropy through the Bekenstein–Hawking formula (see eq. (1.1) in
Natural Units):

SBH =
1

4
AH =

1

4
πR2

+ , (3.4)
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where R+ is the event horizon r+ for the Reissner–Nordström black hole,
while it becomes an effective radius in the presence of other black-hole at-
tributes such as angular momentum J and/or scalar charges Σ. For instance,
in the presence of the latter R2

+ = r2+ − Σ2 ≤ r2+.
The fact that a black hole continuously increases its horizon area can be

interpreted as the second law of thermodynamics if we identify the black hole
entropy as proportional to the horizon area, as pointed out by S. Hawking.
Further support to this interpretation is given by the other laws of ther-
modynamics. in particular, the 0th law of thermodynamics states that for a
system in equilibrium there is a quantity, the temperature, which is constant.
An analogous constant quantity exists for a black hole at equilibrium, the
so-called surface gravity that for the Reissner–Nordström black hole is

κ =
c

(r+ + r−)r+ −Q2
(3.5)

where

c =
1

2
(r+ − r−) (3.6)

It is then possible to identify the black-hole temperature TBH as

TBH =
1

2π
κ =

c

2SBH

(3.7)

The analogy is completed by rewriting the first law of thermodynamics:

dE = TdS + work terms (3.8)

as

dM = TBHdSBH + · · · = κ

2π

AH

4
+ · · · (3.9)

and observing that the third law of thermodynamics, stating that it is im-
possible to achieve T = 0 by a finite number of physical processes, can be
rephrased as the impossibility to achieve κ = 0 by a finite number of physical
processes.

The black hole which reaches the limit equilibrium temperature κ = 0
is called extremal. This corresponds to c = 0, that is to r+ = r−. For the
Reissner–Nordström black hole, this happens when M = |Q|. A supergravity
black hole is supersymmetric (BPS saturated) if its ADM mass M equals the
highest skew-eigenvalue of the central charge matrix ZIJ = −ZJI evaluated

6
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at asymptotic infinity. In the presence of scalar charges Σ, the extremality
condition allows both for supersymmetric and non-supersymmetric black-
hole configurations.

For stationary but non-static solutions, that is rotating black holes of
angular momentum J (Kerr–Newman black holes), the horizon radii become

r± = M ±
√
M2 −Q2 − P 2 − J2/M2 (3.10)

so that for a neutral spinning black hole (Kerr black hole) we reach extremal-
ity when M2 = J , that is when the extremality parameter a∗ ≡ J/(GM2) =
1. Kerr black holes have been observed in our galaxy, in particular GRS
1915+105 is the heaviest of the stellar black holes so far known [20] in the
Milky Way Galaxy, with 10 to 18 times the mass of the Sun and a value of
spin J ' 1078~. It was discovered on 15 August 1992. It is a nearly extremal
black hole since in this case the extremality parameter is a∗ = 0.98 ' 1. It
has been argued that such black hole has an exact Conformal Field Theory
dual [21].

4 Black Holes and Supersymmetry

One of the main properties of supergravity is the presence of scalar fields
not minimally coupled to vector fields. The typical form of the Lagrangian
of a set of electromagnetic field strengths FΛ = dAΛ (enumerated by capital
Greek indices Λ,Σ) in supergravity is of the form:

L ∝ gΛΣ(ϕ)F
Λ
µνF

Σ|µν +ΘΛΣ(ϕ)
1

2
FΛ
µνF

Σ
ρσεµνρσ (4.1)

where the couplings gΛΣ and ΘΛΣ depend on a set of scalar fields enumerated
by an index s. This has the implication that the Maxwell–Einstein black
hole solution gets a non-trivial modification. In particular, the metric flow
of the black hole towards the horizon r = rH is accompanied by trajectories
of scalar-fields evolution from asymptotic infinity to the horizon:

lim
r→∞

ϕs(r) = ϕs
∞ ∈ M

lim
r→rH

ϕs(r) = ϕs
crit ∈ M (4.2)

The resulting analysis exploits the attractor mechanism [22]. Indeed scalar
fields behave as dynamical systems which, in their evolution towards the

7
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black-hole horizon of an extremal black hole, loose memory of their initial
conditions (at ϕ = ϕ∞) approaching a critical point where the first derivative
vanishes:

lim
r→rH

ϕs(r) = ϕs
crit(Q)

lim
r→∞

d

dr
ϕs(r) = 0 , (4.3)

and whose value only depends on the set of charges Q. Consistency of the
solution implies that ϕcrit is a critical point of an effective black-hole potential
VBH(ϕ,Q):

lim
r→∞

∂

∂ϕs
VBH |ϕ=ϕcrit

= 0 . (4.4)

Moreover, the Bekenstein–Hawking entropy-area formula becomes [24, 25]:

SBH =
1

4
AH = πVBH(Q,ϕcrit(Q)) . (4.5)

Note that the critical value of the scalar fields for extremal black holes,
satisfying the attractor mechanism, is given only in terms of the electric and
magnetic vector of chargesQ, and this explains why the entropy only depends
on Q and not on the initial values of the scalar fields ϕ∞.

The attractor mechanism allows to reduce the dynamical black-hole flow
to a first-order evolution both for supersymmetric and non-supersymmetric
extremal black holes [26, 27, 28, 29]. Indeed, the black-hole potential VBH

may be always written for extremal black holes as

VBH = W 2 + 2∂sW∂sW (4.6)

where W (ϕ,Q) is known as the (fake) superpotential. There are several prop-
erties of W that make it important. First of all, in terms of W , the second
order equations of motion of the theory reduce to a set of first order equa-
tions. Moreover W is invariant under the electric-magnetic duality group. It
has a clear meaning in the context of the Hamilton–Jacobi theory, since it
allows the interpretation of the flow as an Hamiltonian flow whose Hamilton
characteristic function is actually simply related to W [30, 31].

The attractor mechanism allows to classify black-hole solutions, that is
critical points of the black-hole potential, through the electric-magnetic du-
ality symmetry of the theory. For each orbit of the duality symmetry, the

8
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fake superpotential W has a different expression. In the particular case of
supersymmetric black holes, one obtains W = |Z| where |Z| is the highest
skew-eigenvalue of the central charge matrix ZIJ . The duality orbits are
modules of groups of type E7, as requested by the Gaillard–Zumino analysis
[23] combined with the attractor mechanism. The group E7 appears in su-
pergravity as the duality group of of the maximally extended N = 8 theory in
four dimensions, in its symplectic 56 dimensional module relating 28 electric
to 28 magnetic charges. The orbits of the 56 module classify the black-hole
solutions preserving different fractions of the original N = 8 supersymmetry.
Moreover, E7 controls the ultraviolet divergences of perturbation theory since
it is anomaly free, and its arithmetic subgroups G ⊂ E7(Z) may encode the
non-perturbative quantum corrections. It happens that all the duality groups
of four dimensional supergravity theories with a number of supersymmetries
N < 8 are groups of type E7, that is they have symplectic representations
admitting a symmetric quartic invariant polynomial, but not a quadratic one
[32]. As an example, we have presented in Table 1 the possible N = 2 choices

G R module Primitive symm. inv.

JO
3 E7(−25) 56 I4

JH
3 SO∗(12) 32 I4

JC
3 SU(3, 3) 20 I4

JR
3 Sp(6,R) 14′ I4
R SL(2,R) 4 I4

R⊕ Γ1,n−1, n ∈ N SL(2,R)× SO(2, n) (2, 2 + n) I4
CP n U(1, n) (1 + n)C I2

Table 1: Supergravity sequence for N = 2 symmetric spaces.

of groups G of the G
H

symmetric spaces and their symplectic representations
R [33, 34]. The first column identifies the scalar manifold whose isometry
group is G is given. In particular, for the first four entries, they are named
with the Jordan algebras J3 over octonions, quaternions, complex and real
numbers respectively, to which they are related. As we see in the last column,
all the duality groups listed are of Type E7 groups [35] except the last one,
which has a primitive quadratic invariant polynomial. For N > 3 supergrav-
ity theories the analogous sequence is given in Table 2. Again, all the groups
appearing in the sequence are of type E7 except the first one, which admits

9
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a primitive symmetric invariant polynomial of order 2.

N G R

N = 3 U(3, n) (3+ n)

N = 4 SL(2,R)⊗ SO(6, n) (2,6+ n)

N = 5 SU(1, 5) 20

N = 6 SO∗(12) 32

N = 8 E7(7) 56

Table 2: The supergravity sequence for N ≥ 3

5 Future directions of research

We are just at the beginning of the exploration of the beautiful intricacy
given by supergravity black-hole physics, its group-theoretical structure and
quantum perspectives. It is clear that much work and effort has to be done
to unveil all the physics behind their structure which are emerging from
supergravity considerations. In particular, we may mention few possible
future directions of research:

• Extension of black-hole solutions to multi-center configurations, the
classification of their orbits and the study of their dynamics, regarding
their splitting behavior and their relation to the underlying stringy
microstate counting.

1
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• Clarification of the role of the group E7 as far as quantum corrections
are concerned.

• Inclusion of the Attractor Mechanism in the presence of higher deriva-
tive modifications of gravity, as suggested by superstring theory.

• The role of N = 8 black holes in a perturbatively finite theory of N = 8
supergravity.
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