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Abstract

In this talk we give an overview of some recent developments in gauge and

gravity theories, focusing on a new duality between color and kinematics. This

duality allows us to construct gravity amplitudes by a simple replacement of color

factors by kinematic numerator factors. Applications of these ideas for determining

the ultraviolet compatibility of supersymmetric versions of Einstein gravity with

quantum mechanics are explained.

1 Overview

Recent years have seen remarkable progress in understanding scattering processes of
elementary particles in gauge and gravity theories, both for phenomenological and the-
oretical purposes. In this talk, we will focus on recent theoretical progress in quantum
gravity. In particular, we will describe a surprising relation between gauge theory—used
to describe nuclear forces—and gravity theories. For nearly 30 years, physicists have
been convinced that point-like theories of gravity along the lines of Einstein’s theory
are incompatible with quantum field theory because they lead to ultraviolet infinities.
These infinites in turn lead to a loss of predictive power at ultra-high energies. Here we
will describe how the new ideas relating gauge and gravity theories make it possible to
challenge these beliefs by giving us the ability to carry out the required calculations.

Although gravity and gauge theories have obvious superficial similarities their detailed
dynamics is rather different. Nevertheless we know from the celebrated AdS/CFT cor-
respondence [1] between gauge and gravity theories that there is an equivalence between
the weak coupling in one theory and strong coupling in the other. Here we will describe
a different connection, purely at weak coupling, showing that in a precise sense gravity
is a double copy of gauge theory. We write this schematically as

gravity ∼ (gauge theory)× (gauge theory). (1)

This was first understood at tree level over 25 years ago using string theory [2], but today
we have a much simpler description [3], allowing for a straightforward extension to loop
level [4].

This new understanding of gravity has allowed allowed us to probe the ultraviolet
properties of gravity theories via explicit calculations at a level deeper than has been
possible previously [5, 6, 7, 8]. Conventional wisdom holds that it is impossible to con-
struct point-like ultraviolet finite quantum field theories of gravity (see e.g. ref. [9]).
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This has been taken as a sign of a fundamental incompatibility between quantum field
theory and gravity. Indeed, simple power-counting arguments show the difficulty of do-
ing so. In a classic paper, ’t Hooft and Veltman demonstrated that gravity coupled to
matter generically diverges at the first quantum loop order in four dimensions [10, 11].
Due to the dimensionful nature of the coupling, the divergences cannot be absorbed by
a redefinition of the original parameters of the Lagrangian, rendering the theory non-
renormalizable. Pure Einstein gravity does not possess a one-loop divergence [10, 12].
The two-loop divergence of pure Einstein gravity was established by Goroff and Sagnotti
and by van de Ven through direct computation [13, 14]. Unfortunately, supersymmetry
offers a mechanism for delaying the onset of divergences in gravity theories. No super-
gravity theory can diverge until at least three loops [9]. However, supersymmetry alone
cannot eliminate the ultraviolet divergences in gravity theories because of the increas-
ingly worse divergences at each loop order in gravity theories. This leads to the general
question for supergravity theories of whether a given potential divergence identified by
power counting and symmetry arguments alone is actually present. Here we will explain
how the double-copy property (1) is helping us to resolve this question.

2 The on-shell philosophy

In recent years there has been a fundamental shift in how we view scattering amplitudes.
In the traditional Feynman diagram approach one starts from an off-shell (i.e. one where
states do not satisfy the Einstein relation p2 = m2) Lagrangian and constructs Feynman
diagrams according to a set of rules. The diagrams encode algebraic expressions describ-
ing the scattering process. The diagrams depend on the gauge and field variable choices.
Gauge invariance is restored only at the end of a computation, when one puts all external
states on shell and all pieces are added together. The lack of gauge invariance for the
individual diagrams can lead to enormously complicated expressions, which simplify only
after a nontrivial effort to combine terms. In numerical approaches, it also exacerbates
numerical instabilities

In contrast, on-shell methods construct new amplitudes directly from simpler gauge-
invariant on-shell amplitudes. Since the simpler amplitudes are already gauge invariant
they can be greatly simplified before being used in the construction of more complex
amplitudes. The two basic on-shell methods are on-shell recursion [15] and the unitarity
method [16]. For studying multiloop gravity, the current method of choice is the unitarity
method. This method was originally developed in the context of one-loop supersymmetric
amplitudes [16], but with further refinements [17, 18, 19, 20, 21, 6, 22, 23], it offers
a powerful formalism for any massless theory at any loop order, including non-planar
contributions. This method has been reviewed numerous times [24, 25, 26], so here we
give only a brief outline.

Unitarity has been a basic principle in quantum field theory since its inception. For
a description of unitarity during the 1960’s see ref. [27]. However, a variety of difficulties
prevented its widespread use as a means of constructing amplitudes, especially after
the rise of gauge theories in the 1970’s. These difficulties include non-convergence of
dispersion relations and its inapplicability to massless particles. It was also unclear how
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one could fully reconstruct loop amplitudes beyond four points from their unitarity cuts.
The modern unitarity method overcomes these difficulties, allowing for the complete
construction of loop amplitudes at any loop order. It does so by avoiding dispersion
relations, and instead using the existence of an underlying covariant Feynman diagram
representations to fully reconstruct amplitudes. By construction the obtained Feynman-
like integrands have the correct analytic properties in all channels.

Over the years there have been a number of important refinements to the unitarity
method [16]. Generalized unitarity [27] (where multiple internal lines are placed on shell,
subdividing a loop amplitude into more than two pieces) was successfully applied in
ref. [18] as a means for greatly simplifying loop calculations. An important more recent
development is the use of complex momenta [13] by Britto, Cachazo and Feng [19],
leading to the realization that at one loop in four dimensions, quadruple cuts directly
determine the coefficients of all box integrals by freezing the loop integration. Powerful
new methods for dealing with triangle and bubble integrals at one loop, as well as rational
terms have also been developed [17, 21, 28, 23, 29]. (These have been described in other
recent reviews [30].) At higher loops, efficient means of constructing the integrands of
amplitudes, including non-planar contributions, have also been devised [20, 6, 22, 31].

Although the unitarity method applies just as well to supersymmetric and non-
supersymmetric theories, it is usually much simpler to deal with the supersymmetric
cases because they have a simpler analytic structure. Indeed, the original application of
the unitarity method was to construct one-loop supersymmetric amplitudes with arbi-
trary numbers of external legs [16].

3 Comparing Gravity to Gauge Theory

We start by comparing gravity to gauge theory using off-shell methods. The Feynman
rules are generated starting from the Einstein-Hilbert and Yang-Mills Lagrangians,

LYM = −1

4
F a
µνF

aµν , LEH =
2

κ2

√
−gR . (2)

From the viewpoint of Feynman diagrams, these two Lagrangians have rather different
properties. With standard gauge choices gauge theories have three- and four-point in-
teractions, while gravity has an infinite number of contact interactions. Perhaps more
striking than the infinite number of interactions is the remarkably complexity of these
interactions.

To be more concrete, consider the three-gluon vertex in Feynman gauge,

V abc
3µ,ν,σ(k1, k2, k3) = gfabc

[

(k1 − k2)σηµν + cyclic
]

, (3)

where g is the coupling, fabc the usual group theory structure constants, ηµν the flat
metric and the ki the momenta of the vertex. This vertex is relatively simple. We may
compare this to the three-graviton interaction in, for example, de Donder gauge,

G3µα,νβ,σγ(k1, k2, k3) = i
κ

2

[

−1

2
k1 · k2ηµαηνβησγ −

1

2
k1νk1βηµαησγ + · · ·

]

, (4)
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where we have displayed two terms out of about 100. Here the coupling κ is related
to Newton’s constant by κ2 = 32π2GN . The precise form of the vertex depends on the
gauge, but in any case the three vertex is a rather involved and unenlightening object.
The complete expression can be found in refs. [32, 10].

Comparing the vertex in eq. (3) to the one in eq. (4), it certainly would appear that
gravity is much more complicated than gauge theory. Moreover, there does not appear to
be any simplicity or obvious relation between the gauge and gravity vertices. The former
leads to complicated diagrams, but the latter appears hopelessly complicated. One can
do somewhat better with special gauge choices and appropriate field redefinitions [14, 33],
considerably simplifying the Feynman rules. Still, multiloop Feynman diagram calcula-
tions in (super) gravity are extremely difficult, and generally out of reach using even the
most powerful supercomputers.

Now let us reconsider the same process but from the on-shell vantage point. If we
take the three-graviton vertex in eq. (4) and dot the three legs with physical polarizations
tensors satisfying the physical state conditions, k2

i = 0, εµνi kiµ = ε
µν
i kiν = εµµ = 0, we

obtain a greatly simplified vertex,

G3(k1, k2, k3) = −iκε
µα
1 ε

νβ
2 ε

σγ
3

[

(k1)σηµν + cyclic
][

(k1)γηαβ + cyclic
]

. (5)

Remarkably, up to overall factors, this is just a double copy of the kinematic part of the
on-shell Yang-Mills vertex,

V abc
3 (k1, k2, k3) = 2εµ1ε

ν
2ε

σ
3gf

abc
[

(k1)σηµν + cyclic
]

,

(6)

where the polarization vector satisfies ε
µ
i kiµ = 0. To make the comparison, we identify

the graviton polarization tensor as a product of gluon polarization vectors, εµνi = ε
µ
i ×

ενi . Similar considerations allow us to express all three-point vertices in supergravity as
products of super-Yang-Mills vertices. Using BCFW recursion [15], these three vertices
are sufficient to construct any tree-level gauge or gravity amplitude. The unitarity method
then allows us to construct any loop amplitude.

Clearly, there is a rather striking relationship between gravity and gauge theory, but
to make it visible we need to keep external states on shell. As we shall see below, the
double-copy structure in eq. (5) is not accidental, but appears likely to extend to all
loop orders. As such, it reflects a profound and important property of quantum gravity,
pointing to unification of the two theories, perhaps along the lines of string theory.

Along these lines, we now discuss the recently discovered duality between color and
kinematics [3, 4]. In general, we can write any n-point tree-level gauge-theory amplitude
with all particles in the adjoint representation as,

Atree
n (1, 2, 3, . . . , n) =

∑

i

ni ci
∏

αi
p2αi

, (7)

where the sum runs over the set of n-point L-loop diagrams with only cubic vertices.
These include distinct permutations of external legs. We have suppressed factors of
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Figure 1: The Jacobi relation for at four points for the three channels labeled by s, t and u.

the coupling constant for convenience. The product in the denominator runs over all
propagators of each cubic diagram. The ci are the color factors obtained by dressing
every three vertex with an f̃abc = i

√
2fabc structure constant, and the ni are kinematic

numerator factors depending on momenta, polarizations and spinors. The form (7) can
be obtained straightforwardly, for example, from Feynman diagrams, by representing all
contact terms as inverse propagators in the kinematic numerators that cancel propagators.
For supersymmetric amplitudes expressed in superspace, there will also be Grassmann
parameters in the numerators.

The duality conjectured in ref. [3] requires there to exist such a transformation from
any valid representation to one where the numerators satisfy equations in one-to-one
correspondence with the Jacobi identity of the color factors,

ci = cj − ck ⇒ ni = nj − nk . (8)

This duality is conjectured to hold to all multiplicity at tree level in a large variety of
theories, including supersymmetric extensions of Yang-Mills theory. In fig. 1 we display
the Jacobi relation at four points. The duality conjecture states there exists representa-
tions of the amplitude, such that the color factors and numerators of the diagrams satisfy
the relations.

At tree level, a consequence of this duality is non-trivial relations between the color-
ordered partial tree amplitudes of gauge theory [3, 34, 35]. The duality has also been
studied in string theory [36, 37] and in terms of Lagrangians [38]. An alternative trace-
based representation of the duality (8) was recently given in ref. [39], emphasizing the
underlying group theoretic structure of the duality. In the self-dual case, underlying
group theoretic structure has been made explicit [40].

Perhaps more remarkable than the duality itself is a related conjecture that once the
gauge-theory amplitudes are arranged into a form satisfying the duality (8), corresponding
gravity amplitudes can be obtained simply by replacing the ci color factor in eq. (7) with
a second copy of a numerator factor ñi [3, 4],

−iMtree
n (1, 2, . . . , n) =

∑

i

ni ñi
∏

αi
p2αi

, (9)

The sum runs over the same set of diagrams with cubic vertices, as in eq. (7). This is
expected to hold in a large class of gravity theories, including theories that are the low-
energy limits of string theories. (As for the gauge-theory case, we suppress factors of the
coupling constants.) At tree level, this double-copy property encodes what are known as
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Figure 2: An example of a duality relation satisfied by numerators for diagrams of the three-

loop four-point amplitude. Both color factors and numerator factors satisfy these relations.

KLT relations between gravity and gauge-theory tree amplitudes [2]. The double-copy
formula (9) has been proven via on-shell recursion [15] for pure gravity and for N = 8
supergravity tree amplitudes, whenever the duality (8) holds in the corresponding gauge
theories [38].

More recently, the above conjectures have been extended to loop level [4], so that at
any loop order L,

Aloop
m =

∑

j

∫ L
∏

l=1

dDpl

(2π)D
1

Sj

njcj
∏

αj
p2αj

, Mloop
m =

∑

j

∫ L
∏

l=1

dDpl

(2π)D
1

Sj

njñj
∏

αj
p2αj

,

(10)
where Aloop

n and Mloop
n are L-loop gauge and gravity amplitudes. As before we removed

factors of the coupling constants. The sums now run over all distinct m-point L-loop
diagrams with cubic vertices. These include distinct permutations of external legs, and
the Sj are the symmetry factors of each diagram. As at tree level, at least one family
of numerators (nj or ñj) for gravity must be constrained to satisfy the duality (8). (For
pure gravity, extra projectors are needed to obtain loop-level amplitudes from the direct
product of two pure Yang-Mills theories.) A three-loop example of a duality relation for
numerators factors is displayed in fig. 2. For the duality (8) to hold, the duality relation
for every propagator in all diagrams must be enforced.

This loop-level extension has been tested in the rather nontrivial case of three- and
four-loop four-point amplitudes [4, 8] and two-loop five point amplitude [41] of N = 4
super-Yang-Mills theory and N = 8 supergravity. It has also been tested in one and
two-loop gravity examples in cases with fewer supersymmetries than the maximum [42].

4 Ultraviolet properties of gravity

Today, our most powerful tool for explicitly determining the ultraviolet properties of
gravity theories is the double-copy property used in tandem with the unitarity method,
as described in a very recent paper [8]. The best theories to study are the maximally
supersymmetric ones, because of their technical simplicity and because supersymmetry
tends to mitigate ultraviolet divergences. N = 4 super-Yang-Mills theory was proven
to be ultraviolet finite in four dimensions long ago [43]. The ultraviolet behavior of
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N = 8 supergravity [44] in four dimension is, however, still under study. Recent reviews
discussing the ultraviolet properties of N = 8 supergravity in more detail are given in
refs. [45].

Because of the complexity of explicit calculations, people normally resort to power
counting arguments. These arguments assume that all symmetries and relevant properties
are known and accounted for. For the case of N = 8 supergravity we know that there
are unexpected ultraviolet cancellations in the theory to all loop orders [46, 47], though
it is still not clear if these are powerful enough to render the theory finite to all loop
orders. (These cancellations are related to a well studied property of one-loop N = 8
amplitudes: in four dimensions triangle and bubble integrals drop out of the amplitudes,
when expressed in a basis of scalar integral in four dimensions [48].) Some hints also follow
from string-theory dualities [49]. We also know that gravity loop amplitudes are much
more closely tied to better behaved gauge-theory amplitudes than had been believed [4].
While these arguments do not offer a proof of finiteness, they do suggest that it would be
wise to reexamine the ultraviolet properties of gravity theories. For other approaches to
trying to make quantum field theories of gravity sensible in the ultraviolet see refs. [50].

Motivated by the hint of high-loop cancellations, explicit calculations were carried out
in refs. [5, 6, 7, 8] to directly investigate the ultraviolet properties of N = 8 supergravity.
These calculations definitively rule out the expected potential three-loop divergence in
four space-time dimensions. Although no potential divergence exists at four loops in four
dimensions (because of an “accidental” cancellation similar to the one preventing a pure
gravity divergence at one loop), direct calculation establishes that the four-loop four-
point amplitude of N = 8 supergravity has the same power counting in D dimensions as
N = 4 super-Yang-Mills theory (which is known to be finite in D = 4).

The result of direct calculation [7, 8] is that the four-loop four-point amplitude of
N = 8 supergravity is of the form,

M
4-loop
4 ∼ D8R4 × loop integrals (11)

where the D8R4 factor corresponds to 16 powers of momentum in the numerators of the
integrals coming out as external momentum. This factor is a shorthand for covariant
derivatives acting on four Riemann tensors with their Lorentz indices contracted in an
appropriate way. If we assume that no further ultraviolet cancellations exist, and that
no further powers of loop momenta can come out of the integrals as external momenta as
the loop order increases, simple power counting shows that in four dimensions the first
divergence would occur at seven loops.

This is in line with recent comprehensive studies of the potential divergences in N = 8
supergravity [51, 52, 53, 54], showing that no divergence is compatible with the known
symmetries until seven loops. Based on these studies, a consensus has formed that
symmetry constraints alone cannot prevent divergences in four space-time dimensions
starting at seven loops and that the theory will likely diverge at this loop order. There
is, however, a more optimistic view [55]. (We note that the previously claimed delay until
nine loops of potential ultraviolet divergences in N = 8 supergravity [56] has now been
retracted [52].)

Is it possible that there are further symmetries or structures that prevent the widely
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expected seven loop divergences? Powercounting arguments using symmetries to rule
out potential divergences can, of course, never prove the existence of divergences, only
that protection against divergences holds to a certain level; if a symmetry or structure is
missed then it may turn out the bound is too loose. More generally, the only way we can
be certain that the coefficient of a potential divergence respecting the known symmetries
is non-zero is to carry out the explicit calculation to show that the numerical value is
nonzero.

Today, even with all the advances, it is not yet practical to carry out a seven-loop
computation. However, a simple way to lower the loop order in which a given potential
divergence can occur is to work in higher space-time dimensions higher dimensions. By
increasing the dimension, N = 4 super-Yang-Mills is no longer ultraviolet finite, allowing
this theory to be used as a playground for sharpening our understanding of divergences
in maximally supersymmetric theories [6, 57, 22]. Explicit calculations [58, 20, 5, 6, 7, 22]
show that at least for four-point amplitudes through four loops, both N = 8 supergravity
and N = 4 super-Yang-Mills theory are ultraviolet finite for

D <
6

L
+ 4 (L > 1) , (12)

where D is the dimension of space-time and L the loop order. (The case of one loop,
L = 1, is special, with the amplitudes finite for D < 8, not D < 10.) For N = 4 super-
Yang-Mills this bound was proposed in ref. [58] and has been confirmed in ref. [59] using
superspace techniques. Explicit computations summarized below demonstrate this bound
is saturated in N = 4 super-Yang-Mills theory through at least four loops [60, 58, 46].
For N = 8 supergravity we know that the bound (12) is saturated through four loops [58,
5, 6, 7, 8].

5 Outlook

In this talk we described a surprising relation between gravity and gauge theories, stem-
ming from a gauge-theory duality between color and kinematics [3, 4]. Although the
duality still has the status of a conjecture at loop level, we can exploit it to streamline
loop computations based on the unitarity method. These types of computations have
been successfully used to probe the ultraviolet properties of supergravity theories.

The current consensus in the community is that the standard symmetries of N = 8
supergravity cannot protect the theory against divergences, starting at seven loops [51, 52]
(though there is at least one contrary opinion [55]). If divergence do appear at seven
loop, then we should see indications starting at five loops, albeit in higher space-time
dimensions. To test this, it would be of crucial importance to directly determine the
ultraviolet properties of N = 8 supergravity as a function of dimension at five loops. If
this calculation can be completed, it should greatly clarify the ultraviolet behavior of
N = 8 supergravity in four dimensions, checking the hypothesis that it is an ultraviolet
finite theory. As recently discussed in some detail in ref. [8], the duality between color
and kinematic numerators and the associated double-copy property of gravity offers a
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promising approach to solve this problem. We can look forward to many new exciting
results in the coming years based on these developments.
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