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1. INTRODUCTION

The study of empirical and theoretical evidence on the structure of riv-
er basins suggests somewhat disparate linkages of features shown by natu-
ral networks, whether living or inanimate. Part of the similarity might
indeed be spurious, as certain topological properties, for instance, tend to
be reproduced by a variety of tree-like forms regardless of wide – even vis-
ible at eyeball – differences of other nature. If indeed distinctive of different
forms, linkages of geometrical or topological features could be important
because the embedded function – one speculates, in fact, that it should be
possible to precisely the geometrical features as the signatures of the evo-
lutionary properties that molded them. A comparative study of networks
thus possibly relates to the general theme of the PAS Workshop, and deeply
concerns hydrologic research.

Of great importance, in this context, is the outstanding progress of the
observations (and their objective manipulations) recently achieved for the
description of river basins from the scale of a few meters (down to O(1) m)
to several thousands of kilometers. In this respect, river basins constitute
one of the most reliable and fascinating laboratories for the observation of
how Nature works across a wide range of scales (Rodríguez-Iturbe and
Rinaldo, 1997). Only the solid reference to natural observation in very par-
ticular cases, in fact, allows the search for consilient mechanisms aiming at
general rules. On this basis alone the importance of the study of the river
basin can hardly be overestimated.

Two problems, both related to the dynamic origin of natural forms, have
interested scientists for a long time. One is the fundamental dynamic reason
behind Mandelbrot’s (1977) observation that many structures in nature –
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such as river networks or coastlines – are fractal, i.e. looking ‘alike’ on many
length scales. The other is the origin of the widespread phenomenon called
1/f noise, originally referring to the particular property of a time signal, be it
the light curve of a quasar or the record of river flows, which has compo-
nents of all durations, i.e. without a characteristic time scale. The name 1/f
refers to the power law decay with exponent �1 of the power spectrum S(f)
of certain self-affine records and is conventionally extended to all signals
whose spectrum decays algebraically, i.e. S(f)�f��. Power-law decay of spec-
tral features is also viewed as a fingerprint of spatially scale-free behaviour,
commonly defined as critical. In this framework criticality of a system pos-
tulates the capability of communicating information throughout its entire
structure, connections being distributed on all scales.  The causes and the
possible relation for the abundance found in nature of fractal forms and 1/f
signals have puzzled scientists for years. Per Bak (e.g. 1996) and collabora-
tors have addressed the link of the above problems, suggesting that the
abundance in nature of spatial and temporal scale-free behaviours may
reflect a universal tendency of large, driven dynamical systems with many
degrees of freedom to evolve into a stable critical state, far from equilibrium,
characterized by the absence of characteristic spatial or temporal time
scales. The key idea and its successive applications address such universal
tendency and bear important implications on our understanding of complex
natural processes. The common dynamic denominator underlying fractal
growth is now central to our interests in landform evolution.

The resistance to Bak’s idea of universality was (and still is in some cir-
cles) noteworthy. Science, and geomorphology in particular, is largely com-
mitted to the reductionist approach. The reductionist tenet is that if one is
capable to dissect and understand the processes to their smallest pieces then
the capability to explain the general picture, including complexity, is granted.
However, the reductionist approach, affected as it is by the need of specifying
so many detailed processes operating in nature and the tuning of many
parameters, though suited to describe individual forms, is an unlikely candi-
date to explain the ubiquity of scaling forms and the recursive characters of
processes operating in very different conditions. Are scale-free, recursive
characters of the evolution of complex systems tied to the detailed specifica-
tion of the dynamics? Or, on the contrary, do they appear out of some intrin-
sic property of the evolution itself? I believe, following Bak, that the invisible
hand guiding evolution of large interactive systems should be found in some
general properties of the dynamics rather than in some unlikely fine-tuning
of its elementary ingredients (Rodríguez-Iturbe and Rinaldo, 1997).
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One crucial feature of the organization of fractal structures in large
dynamical systems is the power-law structure of the probability distribu-
tions characterizing their geometrical properties.

This behaviour, characterized by events and forms of all sizes, is consis-
tent with the fact that many complex systems in nature evolve in an inter-
mittent, burst-like way rather than in a smooth, gradual manner. The dis-
tribution of earthquake magnitudes obeys Gutemberg-Richter law (1956)
which is a power-law of energy release. Fluctuations in economics also fol-
low power-law distributions with long tails describing intermittent large
events, as first elucidated by Mandelbrot’s (1963) famous example of the
variation of cotton prices. Punctuations dominate biological evolution
(Gould and Eldridge, 1993) where many species become extinct and new
species appear interrupting periods of stasis. Levy distributions (character-
ized by algebraic decay of tails, i.e. of the probability of large events)
describe mathematically the probabilistic structure of such events. They
differ fundamentally from Gaussian distributions – which have exponential
decay of tails and therefore vanishing probabilities of large fluctuations –
although both are limiting distributions when many independent random
variables are added together. In essence, if the distribution of individual
events decays sufficiently rapidly, say with non-diverging second moment,
the limiting distribution is Gaussian. Thus the largest fluctuations appear
because many individual events happen to concert their action in the same
direction. If, instead, the individual events have a diverging second moment
– or even diverging average size – the limiting distribution could be Levy
because its large fluctuations are formed by individual events rather than
by the sum of many events. Thus the keywords now are fractal, chaos and
power laws (e.g. Schroeder, 1991).

When studying large, catastrophic events in a large system with inter-
acting agents one can try to identify an individual event as the particular
source. Rather than the recognition of the achievement of a critical state, a
‘Gaussian’ observer may discard the event as atypical – as noted by Mandel-
brot (1983) when studying the statistics of fluctuations because the remain-
ing events trivially follow Gaussian statistics. A rather common reaction to
catastrophic concerted actions is to find specific reasons for large events.
Economists tend to look for specific mechanisms for large stock fluctua-
tions, geophysicists look for specific configurations of fault zones leading
to catastrophic earthquakes, biologists look for external sources, such as
meteors hitting the earth, in order to explain large extinction events, physi-
cists view the large scale structure of the universe as the consequence of
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some particular dynamics. In essence, as Bak put it, one reluctantly views
large events as statistical phenomena.

Bak noted that there is another explanation, unrelated to specific events
and embedded in the mechanisms of self-organization into critical states.
In such states each large event has a specific source, a particular addition
of a grain of sand landing on a specific spot of a sand-pile triggering a large
avalanche, the burning of a given tree igniting a large forest fire, the rup-
ture of a fault segment yielding the big earthquake, or the slowing of a par-
ticular car starting a giant traffic jam. Nevertheless even if each of the above
particular initiating events were prevented, large events would eventually
start for some other reason at some other place of the evolving system. In
critical systems no local attempt to control large fluctuations can be suc-
cessful unless for directing events to some other part of the system.

What are the signatures and the origins of the process of self-organiza-
tion? Bak suggested that self-organized critical systems have one key fea-
ture in common: the dynamics is governed by sites with extremal values of
the ‘signal’, be it the slope of a sandpile or the age of the oldest tree in a
burning forest, rather than by some average property of the field. In these
systems nothing happens before some threshold is reached. When the least
stable part of the system reaches its threshold, a burst of activity is trig-
gered in the system yielding minor or major consequences depending on its
state. Complexity arises through the unpredictable consequences of the
bursts of activity suggesting that the dynamics of Nature may often be driv-
en by atypical, extremal features. This is suggestive, among other things, of
Kauffman’s example of biological evolution as driven by exceptional muta-
tions leading to species with a superior ability to proliferate or to Bak’s
example of the introduction of program trading causing the crash of stock
prices in October 1987. In both cases a new fact leads to breakthroughs
propagating throughout an entire concerted system because it generates
chain reactions of global size. Another feature of self-organizing processes
is that, in order to have a chance to appear ubiquitously, they must be
robust with respect to initial conditions or to the presence of quenched dis-
order and should not depend on parameter tuning.

A major challenge thus lies in the explanation of the dynamic origin of
fractal forms. Considerable efforts have been devoted to define static or
dynamic models able to reproduce the statistical characteristics of fluvial
patterns, and general concepts like self-organized criticality have been
explored in this context (Rinaldo et al., 1993). It should be observed that
real drainage basins are not static but usually evolve on extremely long time
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scales. Nevertheless, statistical properties seem to be preserved during most
of the evolutionary process of a basin – most features characterizing the riv-
er basin morphology are irrespective of age. Some geomorphological signa-
tures like valley densities (the relative extent of unchanneled concave
areas), however, reflect climate changes without appreciable changes in the
basic scaling features of aggregated area and length (Rinaldo et al., 1995).

It is worthwhile recalling that it is not appropriate herein to review the
theoretical background of landscape evolution models. Yet river networks
may be defined by nodes on a regular lattice representing the elevation
field, and links determined by steepest descent on the topography whose
evolution determines the structure. Thus to find the simplest model that
simulates the dynamical evolution of morphologically realistic landscapes
and that preserves certain features during evolution is of interest. The read-
er is referred, for a recent account of the subject, to Rinaldo et al. (2006).

‘Water making its environment’ is thus a variant of the PAS Workshop’s
title that describes well the proposed contents of my contribution. All this
applies to the river basin, carved by water and weathered by other agents,
including biological ones. In the case of living, ecological agents one usual-
ly talks about complex adaptive systems rather than of critical self-organi-
zation (Levin, 1999). Hence my title reflects the forecast that soon solid the-
oretical and observational relations will link food webs, ecological commu-
nities and river drainages both as hierarchical networks and complex adap-
tive systems (Power and Dietrich, 2002; Muneepeerakul et al., 2006).

2. OF FORM AND FUNCTION

Numerical simulations of the proper equations have shown that land-
scape evolution is characterized by two distinct time scales. The soil eleva-
tions are lowered in a nonuniform way by erosion, causing variations in the
drainage directions during the evolution. In a lattice model, at any given
time, one may represent the drainage directions at all sites by means of a
two dimensional map. After a first characteristic time, some sort of ‘freez-
ing’ time, the spanning graph determining the drainage directions in the
basin does no longer change. Erosion keeps acting on the landscape and
changes the soil height, but preserves the drainage structure. The second
characteristic time, which is much longer, is the relaxation time at which
the profile reaches its stable shape. Because many of the measured quanti-
ties, such as the distributions of drained areas and mainstream lengths,
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depend only on the two dimensional map, the existence of a freezing time
much smaller than the relaxation time may provide an explanation for the
fact that several statistical properties are found to be almost the same for
many rivers, irrespective of their age. Thus the spatial analysis of riverine
forms at any time on the geological process makes sense almost in general. 

Natural and artificial network patterns, however, show a great variety of
forms and functions and many do not show the tree characters (i.e. a
unique path from any site to the outlet) that rivers exhibit. One thus won-
ders what is the basic dynamic reason for radically different forms and
functions. Figures 1 to 5 illustrate a sample of the above variety. A reference
framework for different types of hydrologic networks is meant to show that
departures from trees and tree-like networks spanning a given area com-
monly arise. A choice of real and abstract structures relevant to hydrology
is proposed (Figure 1, see over). Optimal channel networks (OCNs) are
described elsewhere in detail (see e.g. Rodríguez-Iturbe and Rinaldo, 1997)
and briefly in the next section of this paper. Suffice here to mention that
they hold fractal characteristics that are obtained through a specific selec-
tion process from which one obtains a rich structure of scaling optimal
forms that are known to closely conform to the scaling of real networks
even in the case of unrealistic geometric boundaries. To design a very inef-
ficient tree, a non-directed structure is shown (Figure 1d) constrained to be
tree-like. This basically corresponds to an algorithm that accepts any
change attributed sequentially at random sites of an evolving spanning net-
work – an existing link is disconnected at a random site and rewired ran-
domly to another nearest neighbor provided the change maintains a tree-
like structure. Hot OCNs, so called because they correspond to high tem-
peratures of a Metropolis scheme where every spanning tree seeded in the
outlet is equally likely, are thus abstract forms meant to reproduce a rather
undirected tree. Peano’s or Scheidegger’s constructs are briefly described in
the caption. They are particularly important because many of their geomet-
rical or topological characteristics can be solved exactly.

Loops are also observed in earth landscapes. Powerful or weak tidal forc-
ings (Figures 2 and 3, pages 164-165) introduce preferential scales related to
crossovers of processes operating with comparable ranges into an otherwise
aggregated pattern. However, deltaic networks arising from the interplay of
distributive drainage patterns and of marine and littoral processes can sub-
stantially alter the similarity of the parts and the whole. One notes, in fact, that
the structure of deltaic networks shows major loops, differently from rivers in
runoff-producing areas. Differences in the sinuosity of the branches prevent
any detailed statistical similarity of the parts and the whole across scales.

ANDREA RINALDO162



RIVER BASINS: WATER AND COMPLEX ADAPTIVE SYSTEMS 163

Figure 1. Samples of trees where a unique pattern links any inner site to the outlet of the
network: a) A real river network, the Dry Tug Fork (CA), suitably extracted from digital ter-
rain maps. Notice its clear tree-like structure, usual in the runoff production zone of the riv-
er basin. Its morphological features (like aggregation and elongation) are typical of fluvial
patterns and recurrent ‘modules’ appear regardless of the scale of total contributing area,
such that the parts and the whole are quite similar notwithstanding local signatures of geo-
logic controls, here marked by a fault line clearly visible across the landscape; b) a single-
outlet optimal channel network (OCN) selected starting from an arbitrary initial condition
by an algorithm accepting random changes only of lowering the total energy dissipation of
the system as a whole – thus incapable of reaching the ground state and settling in a local
minimum dynamically accessible; c) Scheidegger’s construction is generated by a stochas-
tic rule – with even probability, a walker chooses between right or left forward sites only.
The model was devised with reference to drainage patterns of an intramontane trench and
maps exactly into a model of random aggregation with injection or voter models and also
describes the time activity of a self-organized critical (Abelian) avalanche; d) a ‘hot’ OCN
where any arbitrary change randomly assigned to an evolving network is accepted provid-
ed it maintains a tree-like form. It is clearly unrealistic fora variety of reasons; e) Peano’s
construct, where a perfectly recursive rule is adopted to produce a structure whose topolog-
ical features resemble admirably those of real rivers. It is a deterministic fractal, whose
main topological and scaling features, some involving exact multifractals, have been solved
analytically. The basic prefractal is a cross seeded in a corner of the square domain that cov-
ers the cross and its ensuing iterations. All subsequent subdivisions cut in half each branch
to reproduce the prefractal on four, equal subbasins. Here the process is shown at the 11th
stage of iteration (from Rinaldo et al., 2006).



Legitimate questions naturally arise by looking at the structures in Fig-
ures 1-5: why should loopless trees develop? Are the observed landforms
random structures? Are different network configurations equally probable?
If not, to what selective pressure do they respond? Are there universal fea-
tures shown by fluvial landforms, and what is their proper characteriza-
tion? The fluvial network context alone thus proposes the need for some
settlement with respect to the general dynamic origin of network scale
invariance, possibly towards an understanding of a general framework for
the processes of network growth and selection.
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Figure 2. Drainage patterns that form in the tidal landscape are much diverse according
to local conditions and develop over a different range of scales. In addition, they may or
may not develop loops. Here we show three tidal networks developed within saltmarsh-
es of the lagoon of Venice suitably extracted from remote sensing (Feola et al., 2005). The
tidal networks are observed a few km away in space and roughly within the same micro-
tidal range, have similar scales and very different aggregation. Sinuosities of the tidal
meanders vary greatly from site to site, possibly reflecting the age of the salt marsh, and
the drainage density describing the average distance one has to walk before encounter-
ing a creek within a saltmarsh is widely different from site to site (Marani et al., 2003).
The presence of loops much depends on local conditions, and is not necessarily affected
by flood- or ebb-dominance (after Rinaldo et al., 2006).



Branching river networks are striking examples of natural fractal pat-
terns which self-organize, despite great diversities in forcing geologic,
lithologic, vegetational, climatic and hydrologic factors, into forms show-
ing deep similarities of the parts and the whole across up to six orders of
magnitude, and recurrent patterns everywhere (Rodríguez-Iturbe and
Rinaldo, 1997). Form and function coevolve. Interestingly, the drainage
network in a river basin shows tree-like structures that provide efficient
means of transportation for runoff and sediment and show clear evidence
of fractal behavior. Numerous efforts to model the production zone of a
river (where the system is open, i.e. water is more or less uniformly inject-
ed in space and later collected through the structure of the network
implying that landscape-forming processes are well defined) have focused
on reproducing the statistical characteristics of the drainage network.
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Figure 3. A small-scale drainage pattern developed within a macro-tidal environment,
here the Eden estuary in Scotland. Channeled pathways are extracted by suitable digital
image processing techniques (courtesy of Enrica Belluco). Here we see an organized
sequence of regular ditches reminding of the organization of trenches draining into a
complex, looping network structure. Even at eyesight, one catches the lack of a funda-
mental similarity of the parts and the whole that characterizes river networks (after
Rinaldo et al., 2006).



Much attention has also been paid to the temporal behavior and to the
evolution of the topography of the basins, the so-called landscape evolu-
tion problem.

Our observational capabilities are also noteworthy. Accurate data
describing the fluvial landscape across scales (covering up to 5 orders of
magnitude) are extracted from digital terrain maps remotely collected and
objectively manipulated. Raw data consist of discretized elevation fields zi
on a lattice. The drainage network is determined assigning to each site i a
drainage direction through steepest descent at i, i.e. along �zi. Multiple
flow directions in topographically convex sites, and their derived hydrolog-
ic quantities, are also easily tackled. Many geomorphological features are
then derived and analyzed. To each pixel i (the unit area on the lattice) one
can associate a variable that gives the number of pixels draining through i
i.e. following the flow directions. This quantity represents the total
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Figure 4. A large-scale, space-born image of the Brahmaputra-Ganges deltaic network.
The original NASA image is taken from http://www.visibleearth.nasa.gov/ and the chan-
nelized pattern is extracted via suitable image processing techniques that recognize the
spectral signatures of water (courtesy of Enrica Belluco). The complex interplay of the
distributional characters typical of deltaic patterns and of the drainage patterns affect-
ed by strong tidal forcings (emphasized by the pronounced gradients of channel widths)
produces loops appearing on all scales (after Rinaldo et al., 2006).



drainage area (total contributing, or accumulated, area) Ai at the point i,
expressed e.g. in pixel units, via

Ai��j wj,i Aj�1

where wj,i is the element of an adjacency matrix, i.e. it is 1 if j g i and 0
otherwise. Here 1 represents the unit area of the ‘pixel’ unit that discretizes
the surface. In the case of uniform rainfall injection, ai provides a measure
of the flow at point i.

Drainage directions determine uniquely network lengths. Down-
stream lengths (i.e. from a site to the outlet following the largest topo-
graphic gradient, i.e. steepest descent) can be computed easily to derive
their distributions which clearly show the characters of finite-size scaling
(Maritan et al., 1996). The upstream length is defined as the distance,
measured along the stream, from the farthest source draining into i. Over-
all, channelized patterns are now reliably extracted from topographic
fields through the exceedence of geomorphological thresholds, and have
thus much improved our ability to describe objectively natural forms over
several orders of magnitude. Large-scale observations have allowed thor-
ough comparisons across scales defining fractal river basins. One out-
standing example of fractal relation is Hack’s law relating the upstream
length li at a given position i to the total cumulative area ai at that posi-
tion, seen quite early as a signature of the fractal geometry of nature. Con-
tributing area Ai at any point is related to the gradient of the height (the
topographic slope) of the landscape at that point: �zi�Ai

g- 1 with a numer-
ical value of g around 0.5 (e.g. Montgomery and Dietrich, 1992). This
slope-discharge relation proves a powerful synthesis of the local physics.
The distributions of cumulative areas a and upstream lengths l are char-
acterized by power law distributions (with the expected finite size correc-
tions) with exponents in the narrow and related (Rinaldo et al., 1999)
ranges 1.40-1.46 and 1.67-1.85, respectively. It is particularly revealing, in
this context, that the finite-size scaling ansatz provides a most stringent
observational proof of self-similarity.

Figure 5 (see page 233) shows a typical case of finite-size scaling
analysis for total contributing areas within a natural river basin. Details
are in the caption.

Scaling in the river basin has been documented in many other geomor-
phological indicators and exact limit scalings identified (Banavar et al.,
1999), making the case for the fractal geometry of Nature particularly com-
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pelling (Rinaldo et al., 1999). Further proofs have been found by the strik-
ing invariance of probability distributions of length and area under coarse
graining of the elevation field (Rodríguez-Iturbe and Rinaldo, 1997). The
case of rivers is thus a solid starting point for other queries about the pos-
sible consilience of natural mechanisms that involve the signatures of com-
plex adaptive systems.

4. OPTIMAL CHANNEL NETWORKS, LOOPLESS STRUCTURES & THE DYNAMICS OF

FRACTAL GROWTH

It has been suggested (Rodríguez-Iturbe et al., 1992) that optimal net-
works are spanning loopless configurations only under precise physical
requirements that arise under the constraints imposed by continuity. In the
case of rivers, every spanning tree proves a local minimum of total energy
dissipation. This is stated in a theorem form applicable to generic net-
works, suggesting that other branching structures occurring in Nature (e.g.
scale-free and looping) may possibly arise through optimality to different
selective pressures.

In this section we review the basis for the claim that tree-like fluvial
structures are a natural by-product of some optimization of form and func-
tion peculiar to the physics of rivers (Rodríguez-Iturbe et al., 1992 a-c) and
its implications (Rinaldo et al., 1992, 1996, 1999). The OCN model was orig-
inally based on the ansatz that configurations occurring in nature are those
that minimize a functional describing the dissipated energy and on the der-
ivation of an explicit form for such a functional. A major step was the later
proof (Banavar et al., 1997, 2001) that optimal networks are exactly related
to the stationary solutions of the basic landscape evolution equation. In
particular, any configuration that minimizes total energy dissipation, with-
in the framework of general dynamical rules, corresponds, through the
slope discharge relation, to an elevation field that is a stationary solution of
the basic landscape evolution equation. Thus spanning, loopless network
configurations characterized by minimum energy dissipation E are
obtained by selecting the configuration, say s, that minimizes:

E(s)��i Ai



where i spans the lattice and ai and 
 are as defined above. It is crucial, as
we shall see later, that one has 
<1 directly from the physics of the problem.

ANDREA RINALDO168



The global minimum (i.e. the ground state) of the functional for E(s) is
exactly characterized by known mean field exponents (Maritan et al.,
1996b), and one might expect to approach this mean field behavior on try-
ing to reach stable local minima on annealing of the system. This is in fact
the case. The proof of the above is not trivial. We thus maintain, following
proper analyses based on observational data, that the drainage basin can be
reconstructed using the rule of steepest descent i.e. the flux in a point has
the direction of the maximum gradient of the elevation field (the direction
towards the lowest among all its nearest neighbors). Moreover, the channel-
ized part of the landscape is necessarily (but not sufficiently) identified by
concave areas where the above assumption holds strictly. One can thus
uniquely associate any landscape with an oriented spanning graph on the
lattice, i.e. an oriented loopless graph passing through each point. Identify-
ing the flux in a point with the total area drained in that point, one can
reconstruct the field of fluxes corresponding to a given oriented spanning
graph. From the fluxes, a new field of elevation can be defined (Rinaldo et
al., 2006). It should be noted that we must limit our attention to patterns
embedded in runoff-producing areas within the above framework to con-
fine the problem within tractable limits. As we shall see, theoretical matters
are already complex enough even in this oversimplified framework, and the
patterns produced surprisingly similar to those observed in nature.

Note also that we wish to emphasize the dependence on the configura-
tion s, an oriented spanning graph associated with the landscape topogra-
phy z through its gradients �z. An interesting question is how networks
resulting from the erosional dynamics are related to the optimal networks
arising from the minimization of the dissipated energy. Specifically, we
require that any landscape reconstructed from an optimal configuration
using the slope-discharge relation is a stationary solution of the evolution
equation. Superficially, this may seem to be a trivial fact because the rela-
tion between gradients and flows is verified by construction, but one should
notice that the slope discharge relation alone does not implies stationarity,
because the flow may not be (and in general is not) in the direction of the
steepest descent in the reconstructed landscape. Thus optimal channel net-
works consist of the configurations s which are local minima of E(s) in the
sense specified below: two configurations s and s� are close if one can move
from one to the other just by changing the direction of a single link (i.e. the
set of links s�s� represent a graph with a single loop). A configuration s is
said a local minimum of the functional E(s) if each of the close configura-
tions s� corresponds to greater energy expended. Note that not all changes
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are allowed in the sense that the new graph again needs to be loopless. Thus
a local minimum is a stable configuration under a single link flip dynam-
ics, i.e. a dynamics in which only one link can be flipped at a given time,
and is flipped only when the move does not create loops and decreases the
functional E. Any elevation field thus obtained by enforcing the slope-area
relation to a configuration minimizing at least locally E(s) is a stationary
solution, i.e. the landscape reconstructed from an optimal drainage net-
work with the slope-discharge rule is consistent with the fact that the flow
must follow steepest descent.

The OCN model has been thoroughly analyzed (Maritan et al., 1996b;
Banavar et al., 2001). In particular, the scaling behavior of the global mini-
mum has been worked out analytically and it has been found to yield mean
field exponents. Interestingly, local minima also exhibit critical behavior
but are characterized by different nontrivial scaling exponents of key prob-
ability distributions describing e.g. drained area, channelled length, elonga-
tion (e.g. Rodríguez-Iturbe and Rinaldo, 1997).

Figures 6 a-c, that complement Figure 1c, show examples of local and
global minima of OCNs (here chosen in a multiple-outlet configuration).
Figure 6a shows the result obtained by ‘Eden’ growth generated by a self-
avoiding random walk, which is known to lead to suboptimal structures
(Rodríguez-Iturbe and Rinaldo, 1997). It is interesting to use Eden struc-
tures as benchmarks because their chance-dominated selection principle
(no necessity is implied by the random-walk dynamics, and tree-like struc-
tures are selected because of the self-avoiding nature imposed on the
process) because such structures were initially thought of as capturing the
essentials of natural selection. That turned out to be an artifact of non-dis-
tinctive tests of the network structure, nicely termed the ‘statistical
inevitability’ of Horton’s laws. Indeed if topological measures alone (e.g.
Horton numbers, Tokunaga matrices) are used to sort out the fine proper-
ties of networks, one can be hugely misled into finding spurious similari-
ties with natural forms, as one would sometimes safely conclude even at
eyesight: compare e.g. Figure 6a with b – topological features like e.g. those
based on Strahler’s ordering like Horton ratios or Tokunaga’s matrices are
indistinguishable in the two cases shown (Rinaldo et al., 1999). Yet these
are very different networks, as (linked) scaling exponents of areas, lengths
and elongation clearly reveal. If eyesight and common sense would not suf-
fice, exact proofs are available, like in the case of Peano’s basin (Figure 1e)
where topological measures match perfectly those of real basins and of
OCNs, but fail to satisfy the strict requirements of aggregation and elonga-
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tion. More subtle but equally clear is the failure of random walk type mod-
els or topologically random networks to comply with exhaustive compar-
isons (Rinaldo et al., 1999). Notice that the latter models were extremely
influential in suggesting that chance alone was behind the recurrence of
natural patterns, because of the equal likelihood of any network configura-
tions implied by the topologically random model. Instead their purported
similarity with natural patterns is now seen as an artifact of lenient com-
parative tools, and the statistical properties and ‘laws’ derived in that con-
text are almost inevitable for spanning trees.

Necessity is instead at work in the selection of natural networks. Figure
6b shows a local minimum of E(s), whose fine features match perfectly
those found in Nature (Rinaldo et al., 1999) including a power law in the
distribution of cumulative areas with exponent g�0.43±0.01 (compare e.g.
with Figure 5). These results, (b), are obtained moving from an initial con-
figuration s. A site is then chosen at random, and the configuration is per-
turbed by disconnecting a link, which is reoriented to produce a new con-
figuration s�. If the new configuration lowers total energy dissipation i.e.
E(s�) < E(s), the change is accepted and the procedure is restarted. Figure
5 (c) is obtained through the same procedure used to obtain (b), where an
annealing procedure has been implemented, i.e. unfavorable changes may
also be accepted with probability proportional to e-(E(s)-E(s�))/T where T
assumes the role of temperature in a gas or a spin glass. It is rather instruc-
tive to compare Figure 5(b) with (c), where a ground state is reached by
very careful annealing using a schedule of slowly decreasing temperatures.
This state is characterized by mean field scaling exponents (here matched
perfectly), and overall all too regular and straight to reproduce, even at eye-
sight, the irregular and yet repetitive vagaries of Nature.

Several random constructs have been thoroughly analyzed, in a few cas-
es through exact results, comparing them with optimal ones obtained
through minimization of total energy dissipation (e.g. Rinaldo et al., 1999).
Random network forms range from self-avoiding random walks like Eden
growth patterns, topologically random or Leopold-Langbein constructions,
to the so-called Scheidegger network (Figure 1) which is a directed random
aggregation pattern with injection. Deterministic fractals like Peano’s net-
works have been also exactly analyzed. Thus many misleading similarities
are inferred from the matching of topological measures like Horton’s ratios.
These turn out to be too lenient measures, as they occur almost inevitably
for spanning loopless networks and thereby do not distinguish the structure
of the aggregations patterns. On this basis alone it was shown that topolog-
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Figure 6. Multiple-outlet networks obtained in the same rectangular domain by: (a) Eden
growth patterns of self-avoiding random walks filling the domain; (b) an imperfect opti-
mal channel network (OCN) leading to a local minimum of total energy dissipation. Note
that OCNs bear long-lived signatures of the initial condition owing to the myopic search
procedure, but actually reproduce perfectly the aggregation and elongation structure seen
in real river landscapes; and (c) ground-state OCNs obtained through simulated annealing
using a very slow schedule of decreasing temperatures. The reaching of the ground state
is confirmed by the matching of the exact mean field exponents with those calculated for
(c) (Rinaldo et al., 2006).

ical similarities are to be interpreted as necessary, rather than sufficient,
conditions for comparison of network structures. A distinctive comparison
of network structures stems from the matching of several scaling exponents
which characterize the finite-size scaling forms of the distributions of
length, aggregated area and elongation. At times perfect matching of aggre-
gation (underlined by Horton’s ratios of bifurcation, length and area indis-
tinguishable from those observed in natural structures) proves inconsistent
with the structure of channelled lengths, like in the case of self-avoiding
random walks. Moreover, suboptimal networks, that is, those derived by
imperfect search of the type perceived as dynamically feasible, match all
the features of the networks observed in the fluvial landscape, and thus



pass the most thorough screening differently from all chance-dominated
constructs. The hydrologic context thus suggests a case for optimal selec-
tion of network structures in Nature.

I shall now finally define precisely the selective advantags of trees in the
fluvial physics (Banavar et al., 2001). Consider a square lattice. Fix an ori-
entation for all lattice bonds. On each bond b a flux Jb is defined. Assume
that Jb�0 if it is flowing along an assigned orientation. Uniform (unit)
injection is equivalent to the set of constraints �.J�1, i.e. a discrete version
of the divergence, and is a measure of the net outflow from a site:

�.J��b	x Jb �(b,x)�1

where: the unit value is the model injection, constant for every node in the
simplest case; b spans all bonds (links) concurring on node x, and q(b,x)=1
(-1) if b is oriented outward (inward) node x. Any local minimum of the
function:

E��b Jb



when 0�
�1, corresponds to Jb�0 only on the bonds of a spanning tree.
Note that the assimilation J�A is commonplace in hydrology, for a variety
of empirical and theoretical reasons (Rodríguez-Iturbe and Rinaldo, 1997)
– thus the above equation is exactly that defining an OCN. The main point
is in the proof that the networks that correspond to local minima of the dis-
sipated energy are loopless and tree-like. The tree must be spanning due to
the above constraints: one cannot have Jb�0 for all b’s connected to a site
so that there must be at least one outlet from each site x. Some site (or sites)
must also be declared to be the global outlet.

Figure 7 illustrates an extremely simple example with just four sites: (a)
shows the setup for the elementary 4-bond network. The dot is the outlet.
Here the current a is taken as the parameter regulating the entire distribu-
tion of fluxes owing to continuity; (b) illustrates the only loopless configu-
rations of the system generated by integer values of a; (c) shows the plot of
the function E vs a from the following Equation with g�0.5:

E�a
 +(a+1)
+(1-a)
+(2-a)


which is derived from the above equations. In particular, (b) shows the plot
E(a) where one notices that there are local minima in correspondence with
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one of the four currents being zero (a�2, 1, 0, -1), corresponding to the four
trees shown in Figure 3c. The proof for the general case is elsewhere
(Banavar et al., 2001).

Figure 7 (c) shows the function E versus a plotted for various values of

 (specifically, for 
�0.25, 0.5, 1 and 2). Note that for 
�1 all directed (with
the currents going in the positive directions) configurations, loopless or
not, have the same energy. The case 
�2 corresponds to the resistor net-
work case for which there is just one minimum at a�1/2. Note that since
there is one unknown current for each bond and one continuity equation
for each site the number of independent variables is given by the number
of bonds minus the number of sites (excluding the outlet), which for the
simple topologies considered is equal to the number of elementary loops
(this is a particular case of the Euler theorem).

The general proof is beyond the scope of this paper and given elsewhere
(Banavar et al., 2001) for an arbitrary graph, where the number of inde-
pendent loops is given by the number of bonds minus the number of sites
plus the number of connected components. Note that for the particular
case where the graph must be a spanning structure the number of connect-
ed components is unit.

Obviously, for the set of dynamical rules postulated above, the energy
landscape is riddled with a large number of local minima characterized by
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Figure 7. The 4-bond lattice. (Top left) the 4-node arrangement, with indications on the
currents that respect continuity (note that a unit flux is injected at each node); (bottom
left) the only for possible trees correspond to the cases a�0, -1, 1, 2. (Center) The energy
function E(a) vs. a; (Right) Energy functions E(a) vs. a for the cases g�0.5, 0.75, 1, 2 (after
Banavar et al., 2001).



a range of similar values of E. In single realizations, boundary and initial
conditions affect the feasible (i.e. dynamically accessible) optimal state to
different degrees depending on their constraining power. This fact matches
the observation that scaling exponents are coherently linked in a range of
values, narrow enough but significantly different from the ground state (see
e.g. Rodríguez-Iturbe and Rinaldo, 1997). The truly important implications
are twofold: one one side, in fact, all local optima are trees; on the other,
imperfect optimal search procedures are capable of obtaining suboptimal
networks which nevertheless prove statistically indistinguishable from the
forms observed in nature and quite different from the absolute minima.
Indeed we believe that the worse energetic performance and yet the better
representation of the patterns of Nature are thought of as mimicking the
myopic tinkering of evolutionary processes.

The rules investigated above also suggest that the convexity of the func-
tion defining the selective advantage of different hydrologic network struc-
tures matters. In the case of fluvial basins, the basic concavity of the ener-
gy E is provided directly by the physics of the landscape evolution problem.
It has been studied whether similar principles apply to the selection of dif-
ferent network structures by natural processes of different nature. While a
detailed account is given elsewhere (Rinaldo et al., 2006), suffice here to
mention that a class of optimal models evolved by local rules and chosen
according to global properties of the aggregate yields unexpected behavior
in the transition from different types of optimal topologies. Random or
scale-free arrangements (and a variety of in-betweens like small-world con-
structs) are then seen as particular cases emerging from selective pressures
towards connectivity and/or directedness.

8. CONCLUSIONS

The results I have analyzed here show consistently that selective crite-
ria blend chance and necessity as dynamic origins of recurrent network
patterns seen in the river basin. The role of selective pressures as a possible
cause of emergence of observed features has been reviewed both in the cas-
es of loopless and of looping networks. In the latter case we show why
Nature distinctively favors tree-like shapes in the particular dynamic envi-
ronments of which landscape evolution carved by water is a particular case. 

My main conclusion is that the emergence of the structural properties
observed in natural network patterns may not be necessarily due to embed-
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ded rules for growth, but may rather reflect the interplay of dynamic mech-
anisms with an evolutionary selective process. This has implications, of
course, for hydrologic research because many landforms originated by the
collection or the distribution of hydrologic runoff (from riverine to tidal or
deltaic patterns) might indeed be classified according to the compliance to
the above mechanisms. Whether the above has somewhat more general rel-
evance to Nature’s mechanisms, it remains to be seen as more and more we
need to understand how the complex biosphere has emerged from natural
selection and other forces operating at small scales.
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Figure 5. Power-law distribution of total cumulative area (top left) for the 8000 km2 Tanaro
river basin (top right). Here the cumulative distribution P(A∅a)�ag-1 (which, of course,
implies that the pdf scales like a power law with exponent g) is computed for 4 subbasins
of different maximum size A* (Tanaro, 8000 km2; Orba, 500 km2; Bormida 1300 km2; and
a small unnamed basin, 80 km2). The similarity of the basins insure that in the range of
areas where no cutoff effect is perceived, one obtains a remarkably coherent estimate of
g�0.45. The distributions collapse into a single curve, however, once plotted as P(A∅a) a0.45

vs a/A* (bottom). This suggests a finite-size scaling ansatz for the area distribution, and a
strong empirical proof of self-similarity of form in the river basin. Needless to say, the
above observation is confirmed by ubiquitous empirical evidence regardless of geology, cli-
mate, vegetation and exposed lithology (Rodríguez-Iturbe and Rinaldo, 1997).
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