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The first general result concerning the number of integer
solutions of a diophantine equation is due to Runce [3] and
in its simplest form is as follows.

(i) I f(x, y) is a polynomial with integer coefficients
irreducible in the rational field and the eguation f(x, y)=o0
has infinitely many integer solutions, then the highest homo-
geneous part of f(x, 4) is up to a constant factor a power of
an irreducible form.

The more general formulation refers to the highest isobaric
part of f(x, y).

Paper presented on Oclober ryth, 1968 by Pontilical Academician
.02, WacLAW SIERPINSKI,
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The final result permitting to decide whether any given
equation f(x, y)==0 has Infinitely many integer solutions is
due to SIEGEL [4] and is as follows.

(iiy 1 f{x, ¥)=0 has infinitely many integer solutions,
then there exist rational functions R{z), S(t) not both constant
such that

(1) f(R@), SE)=0

idenfically in ¢ and cither

. A B(/)
(2) R(7) =T Sty == XOL
or
, o COO D)
(5) 1\'(1) - gg(f) LIRS () e Q_(}.—) o]

where A, B, C, D, L, Q are polynomials with inleger cocffi-
cienfs, 1. is linear, Q irreducible indefinite quadratic.

The aim of this note is fo deduce from the two above re-
sults the following improvement of the first one.

Theorem. 1 f(x, v) is a polynomial with integer coeffi-
cients irreducible in the raticnal field and the equation
f(x, y)==0 has infinitely many integer solutions then the
highest homogenecous part of f(x, v} is up to a constant factor
a power of a linear or irreducible indefinite quadratic form:.

Prof. Lef f(x, ¥) have degree » and denote by f,(x, y)
its highest homogenecus part, By (i) either f,(x, y)=a x®
or {,{x, v)=5b 4" or

(4) ](”(x, y) =g x4+ b y” (ab:;f.o)_
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It remains to consider the last case. By (ii) we have (1)
where cither

1. R, S are polynomials not both constant or
z. (2) holds with m >0, (A,B.L)==1 or
3. (3} holds with m >0, (C,D,Q)=1.

In the case 1. it follows from (1) and (4) that R and S are
of the same degree. Denoting this degree by & and the leading
coefficients of R and S by # and s, respectively, we get
fo (7 s)=1lim 7 {(R(£), S(£))=0 .
£=00
Hence f, (x, y) is divisible by s x - » y and by (i)
.fr.' (x, 3’)13 (S X ¥ y}n .
In the case 2. let £, be the zero of L(7). Clearly A(f)#0 or
B(t 520, Mulliplying (1) by L{#"" and substituling after-
wards £=:{, we obtain
In (Alt,), Blt))=o .

Hence f, (x, y) is divisible by B(#,) » - A{,) v and by (i}

To (o, y)=c (Bt,) x - AG,) )" .

In the case 3. let &, % De the zeros of Q). Clearly

C{t)70 or D@70  (i=1,2).

Multiplying (1) by Q{)"" and substituting afterwards ¢=¢;, we

obtain

f. (C), DE) =0 (i=1,2).
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Hence f, {x, v) is divisible by D (%) x - C (&) ¥ and by (4)
D{t)yo (i=1,2). If C#) D) is rational then by (i)

fu (5 ) (D) - C) P

If C@) D)~ is Drational, the C{#) D{t)"! are conjugate
in a real quadratic fic}d and by (1)

fu (e y)=c (D) x - Cl) v) (D) x - Cl) w2

Covollavy. T f, (%, v) Is an irreducible form of degree n>2
and g (%, v} is a polynomial with Integer coefficients of degree
m<_n then the equation

fu Ge, v)=g (%, ¥)

has only finitely many integer solutions.

The corollary represents an improvement on the analogous
results which Rora [2] deduced from his famous theorem;
this had stronger hypothesis m-Cn - 2.

I conclude by expressing my thanks to Professors . Da-
veneorT and D.J. Lewis for their helpful suggestion and in
particular for pointing out the corollary.
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In this second part I wish to extend the result of the first
part so as to improve on Runge’s theorem in its full gene-
rality.

Let f(x, v) be a polynomial with integer coefficients
irreducible in the rational field and suppose that the equation
f (x, ¥)=0 has infinitely many integer solutions. Then accord-
g to Ruwce [3] (see [6], p. 89):

(1) the highest terms in x and y occur in f separately
as ax', Dy";

(2) each branch of the algebraic function y of x defined
by f=o0 tends to infinity with x and is of order x™/, every
term ex® y° in f has np+momn;

(3) the sum g (x, ) of the terms with np+mo=mn is
expressible as

b 11 (3" - d® x*) B=1, ..., =
B
where 11 (2-d®) is a power of an irreducible polynomtal.
b
Runck does not say explicitly that
# 2

-—;— = IL’ e (?,n, 13),

but what he really proves is that g (x, y) is a power of an
irreducible polynomial {for another preof see Skorem [5]).

ot
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Therefore, factorizing if necessary 3" - d® &% we can conclude
that

{4) gz, y)=0b h (x4, 9P d=(m, n),

where % (u, v) is an irreducible form. We shall prove:

Theorem. If [ (x, vy} 1s 2 polynomial with integer coeffi-
cients irreducible in the rational field, of degree m in x and =
in y, and the equation f (x, ¥)=o0 has infinitely many integer
solutions then (1) and (2) hold and the sum g (x, ¥) of all
terms ¢x® ¥° of f with ng -+ mo =mn is of the form bA (x4, /O,
where d=(m, n) and A is a linear or irreducible indefinite qua-
drafic form.

The proof is based on the theorem of SiEGEL {4] quoted
in part I, it will be however a liftle simpler if we reformulate
the said theorem, examining Siegel’'s argument. SIBGEL proves
that if { (x, ¥)=0 has infinitely many integer sclutions then
the genus of f (x, ) =0 is zero (¥). In this case {cf. Sxorzm [6]
p. 102) there is a parametrization

¢ {u, v) U (u, v)
X (u, v) ¥

(5) ¥ G, v)

where ¢, W, ¥ are relatively prime forms of the same positive
degree with rafional coefficients and where the equation

X (u, v) = h

has infinitely many integer solutions for some hv#0. Now, as
proved by Mamier [1] {cf. {6] p. roo) the last condition
implies that

(*} The assumptions imply the absolute irreducibility of f, hence the
genus is defined.
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6 w,0)=c (@, Do) or Y (w,v)=d; (au?+buv -+ cyv?),
X ghdy 0y LS 1 2 2

where b2 - 4a,c, is positive and is not a perfect square. The
latter case by the substitution w=1, »==1 leads to a parametri-
zation

Cit D
(7) x(t) = —)—8 y {t)= Q—%;ﬂ Flx (@), y (O)=o0,

where C, D), { are polynomials with rational coefficients, Q
is irreducible indefinite quadratic, a0, o0 and x (), v {¢)
are not both constant.

Moreover, and this remark of MALLET seems to have been
so far overleoled, the former case leads to the same para-
metrization {7) with a=f=0, Indeed on substituting #=7,
v=b7t (1~ a) £y we get from (5) and (6)

@t b7 (1 a b)) Yt b7 (1 - t))

2 (@)= Ly 0=

and the polynomials on the right hand side which are not both
constant can be taken as C (), B {f) in (7). Therefore, if
f (x, ¥)=0 has infinitely many integer solutions then (7) holds
and either

(8) a=f=o0, C, D arenotboth constant
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Or

(9) @+ {30, (C, Q= (D, Q=1

Proof of the theorem. By Runge’s theorem we have (1),
(2) and {4) and it remains to show that k& is linear or indefinite
guadratic. Set m/d=p, nfd=v.

In the case (8) let v, & be the degrees of C, D regpectively
and c,, 4, their leading coefficients. If ¢ tends fo infinity then
x 18 of order &7, v of order #* and by (2) 8=y m/n. Thus we
get from ()

F= o0

from (4)
ho{c*,, ') = o

and b (2, v) is divisible by 4%, - ¢ v, Since £ is irreducible
it must be linear.

In the case (g) let £, & be the zeros of Q (). I ¢ tends
to £ then x is of order (4-{£)"" (possibly tend, to o if
o C(4)=0), v of order (£-#)"" (possibly tends to o if
B=D (£)=0) and by (2) B=o m/n, C (I)s0D () (i=1, 2).
Thus we get from ()

g(CE), D) = lim Q@™ flx @, v ®)=0,

,tf—;."i

from (4)
h{C (), D {#))=o0

and k (x, v) is divisible by D (&) - C ()* v (i=1,2).
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If C (&) D () is rational 2 must be linear as belore.
IF C )" D () is irrational then C (£)~* D (%) are
conjugate in a rveal quadratic field, % is divisible by

(D ()" w-C () v) (D (&) w—C ()" v)

and # is indefinite quadratic. This completes the proof.

It should be noted that the above proof does not share an
essential advantage of Runge's proof, namely it does not per-
mit to estimate the size of solutions of f (x, ¥} =0 if the theorem
implies the finiteness of their number. The reason for this
defect is the noneffective character of Siegel’s theorem.
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