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In the Encyclical Laudato Si’ I stated that “we are called
to be instruments of God our Father, so that our planet
might be what he desired when he created it and cor-

respond with his plan for peace, beauty and fullness” (53).
In our modern world, we have grown up thinking ourselves
owners and masters of nature, authorized to plunder it
without any consideration of its hidden potential and laws
of development, as if subjecting inanimate matter to our
whims, with the consequence of grave loss to biodiversity,
among other ills. We are not custodians of a museum or of
its major artefacts to be dusted each day, but rather co-op-
erators in protecting and developing the life and biodiver-
sity of the planet and of human life present there. An
ecological conversion capable of supporting and promot-
ing sustainable development includes, by its very nature,
both the full assuming of our human responsibilities re-
garding creation and its resources, as well as the search
for social justice and the overcoming of an immoral system
that produces misery, inequality and exclusion.

Address of His Holiness Pope Francis to Participants in the
Plenary Session of the Pontifical Academy of Sciences,
Consistory Hall, Monday, 28 November 2016.
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In the Encyclical Laudato Si’ I stated that “we are called to 
be instruments of God our Father, so that our planet might be 
what he desired when he created it and correspond with his plan 
for peace, beauty and fullness” (53). In our modern world, we 
have grown up thinking ourselves owners and masters of nature, 
authorized to plunder it without any consideration of its hid-
den potential and laws of development, as if subjecting inanimate 
matter to our whims, with the consequence of grave loss to bio-
diversity, among other ills. We are not custodians of a museum or 
of its major artefacts to be dusted each day, but rather co-opera-
tors in protecting and developing the life and biodiversity of the 
planet and of human life present there. An ecological conversion 
capable of supporting and promoting sustainable development 
includes, by its very nature, both the full assuming of our human 
responsibilities regarding creation and its resources, as well as the 
search for social justice and the overcoming of an immoral system 
that produces misery, inequality and exclusion.

Address of His Holiness Pope Francis to Participants in the Plena-
ry Session of the Pontifical Academy of Sciences, Consistory Hall, 
Monday, 28 November 2016.
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Preface

One of the key issues today concerns the place of the human person 
in a growing digital environment of increasing complexity that not only 
expands the range of his or her capacities, but also may compete with 
them or even replace them. Over the past fifty years, robots and computers 
have progressively supplemented humans, initially only in relatively simple 
computational and manipulation tasks, but more recently in higher cogni-
tive tasks that used to be the prerogative of the human brain, including lan-
guage, mathematics, probabilistic reasoning and decision making. A crucial 
question is how to enhance the productive interactions between humans 
and artificial intelligence (AI). As such interactions reach new orders of 
complexity, many researchers and philosophers feel that the outcome may 
defy our understanding and produce radical changes in our personal and 
social life in the near future.

Our Academy has already organized several meetings on the organi-
zation and functions of the human brain and mind (The Educated Brain, 
2003; Human Neuroplasticity and Education, 2011; Neurosciences and the Hu-
man Person, 2012). We propose now to study the Power and Limits of Artificial 
Intelligence.

What is the state of the art in AI software and machine learning? Can all 
aspects of brain function be mimicked by artificial systems? Will machines 
soon surpass us in all domains of human competence? What is the proper 
form of mathematics that may capture the operation of minds and brains? 
What is consciousness? Could a machine be endowed with an artificial 
consciousness? What would it take for a machine to possess a sense of self? 
Will intelligent machines soon pose a danger to humanity? Is it possible 
to design and construct an intelligent robot endowed with an artificial 
sense of ethics? How can we enhance the humanitarian uses of artificial 
intelligence and robotics, in particular in the field of education, health and 
emergencies?

We know that all these questions are very difficult to answer today, but 
we want to open a discussion between experts of the different fields in 
order to map the new cognitive environment that humanity is creating for 
the first time in history.

Antonio M. Battro and Stanislas Dehaene
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Programme

 Wednesday, 30 November 2016

STATE OF THE ART IN ARTIFICIAL INTELLIGENCE, ROBOTICS, BRAIN 
MODELING, BRAIN-COMPUTER INTERFACES 

09:00	 Werner Arber, Word of Welcome 
09:10	 Marcelo Sánchez Sorondo, Welcome Greetings 
09:20	 Stanislas Dehaene, Outline of the Workshop 
09:30	 Artificial Intelligence: A Survey of Achievements and Questions, Viewed from 

Mathematics
	 Cédric Villani, Institut Henri Poincaré, PAS 
09:50	 Discussion 
10:10	 The Evolutionary Success of Cerebral Cortex: Computing in High Dimensional 

Dynamic Space 
	 Wolf Singer, Strüngmann Institute, Frankfurt, PAS 
10:30	 Discussion 
10:50	 Coffee Break 
11:20	 Breaking the Gap Between AI and Human Intelligence: What Are We Missing? 
	 Yann LeCun, Facebook 
11:40	 Discussion 
12:00	 Lunch at the Casina Pio IV 
14:00	 Comment: The Ethics of Artificial Intelligence 
	 Stephen Hawking, University of Cambridge 
14:05	 The Probabilistic Brain
	 Alex Pouget, Université de Genève 
14:25	 Discussion 
14:45	 Building Machines That Learn and Think Like People 
	 Josh Tenenbaum, MIT 
15:05	 Discussion 
15:25	 Coffee break 
15:50	 Towards Artificial General Intelligence
	 Demis Hassabis, Google DeepMind 
16:10	 Discussion 
16:30	 Motivation and Evaluation are Computationally Messy
	 Patricia Churchland, UCSD, California 
16:50	 Discussion 
17:10	 General Discussion 
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17:30	 Children and Robots
	 Antonio Battro
18:00	 Departure from the Casina Pio IV by bus for the visit to Palazzo Farnese 
18:30	 Dinner at the Casina Pio IV for those not attending the visit to Palazzo 

Farnese 

 Thursday, 1 December 2016
 
PUTATIVE PREROGATIVES OF THE HUMAN BRAIN: EDUCATION, REASONING, 
CREATIVITY, CONSCIOUSNESS, SENSE OF SELF, ETHICS...COULD THEY BE CAP-
TURED IN MACHINES? 

09:00	 The Impact of Augmented Reality, Wearables and Robotics In Neuroscience and 
Neuropsychiatry

	 Olaf Blanke, EPFL 
9:20	 Discussion 
9:40	 What is Consciousness, and Could Machines Have It?
	 Stanislas Dehaene, Collège de France, PAS 
10:00	 Discussion 
10:20	 Coffee break 
10:50	 What Really Matters: Children’s Inferences About Learning, Trying and Caring
	 Laura Schulz, MIT 
11:10	 Discussion 
11:30	 Artificial Intelligence and Human Minds: Perspectives From Studies of 

Infants Elizabeth Spelke, Harvard 
11:50	 Discussion 
12:10	 Lunch at the Casina Pio IV 
14:00	 The Limits and Potential for Brain Computer Interfaces 
	 John Donoghue EPFL, Lausanne 
14:20	 Discussion 
14:40	 Collaborative Human-Robot Autonomy
	 Manuela M. Veloso, Carnegie Mellon University 
15:00	 Discussion 
15:20	 Who Am I?
	 Laurie Paul, North Carolina Chapel Hill 
15:40	 Discussion 
16:00	 Coffee Break 
16:30	 General discussion and drafting of final statement by all participants 

(discussion led by Stanislas Dehaene) 
18:30	 Dinner at the Casina Pio IV
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Artificial Intelligence – Big 
Achievements and Huge Questions 
Viewed from Mathematics

Cédric Villani

Introduction
Mathematical algorithms have probably been around for more than 

4000 years, as suggested by the famous YBC7289 clay tablet (dated 1600 
BC or earlier), displaying an amazing computation of √2. They have grown 
in scope, diversity and sophistication together with mathematical sciences. 
But the middle of the twentieth century marked an amazing new turn. 
On the one hand, arguably for the first time in history, the outcome of a 
major human event depended on the devising of a clever, mathematically 
sophisticated algorithm (this is the story of the work of Alan Turing’s team 
during Second World War). On the other hand, within just a few years, the 
basis of modern computer technology and computer algorithms were laid 
with the discovery of transistors and the works of Turing, Shannon, Von 
Neumann, Wiener and others. 

Progress had been slow, but then it accelerated. Fast-forward half a cen-
tury, and here we are, with a world full of algorithms, and entire sectors of 
human activities have been revolutionized by algorithms. For instance, to 
get an idea of how it now looks in world finance, just read the books “6” 
and “5” by Alexandre Laumonier, providing an impressionistic but tho-
roughly documented of mysterious algorithms fighting against each other, 
fortunes evaporating in a fraction of a second, crazy race for speed of tran-
smission and execution. Whether this vision, fascinating and frightening, 
will extend to all of society, has been the subject of considerable debate; but 
one sure thing is that algorithms will capture a more and more important 
role in our economies, our societies, our lives. 

A chapter within this long rise of algorithms is the long rise of artificial 
intelligence. This field is old, by modern standards, since it started almost 
at the same time as computer science, with the works of Turing and Shan-
non. Actually, some of the most important methods and algorithms used 
nowadays in this field did originate from the fifties or even forties. A vision 
of the founding fathers was that artificial intelligence would help us under-
stand our own intelligence. After some initial fascinating dreams and suc-
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cesses, crystallized in 1968s HAL computer in Kubrick’s Odyssey of space, 
the field mostly stalled. Then it accelerated again recently, partly because of 
new methods, partly by taking advantage of the amazing new speeds and 
capacities of computers, partly by the exploitation of the huge databases 
which have appeared. And suddenly Artificial Intelligence has become an 
enormous hype, with speculations of superhuman intelligence, economic 
catastrophes; and any ambitious “global entrepreneur” has to keep artificial 
intelligence under his or her radar. Questions about artificial intelligence 
and machine learning are so frequent on Quora, appear in broad audience 
magazines, newspapers; they have also given rise to new directions of rese-
arch and a renewed attraction for young scientists. 

In this context, it is normal to be enthusiastic but to keep away from 
mystic overhype. It is also normal to remain cautious, and to try and point 
out questions which remain in the dark. So let us go for a nonexhaustive 
overview. 

Disclaimer: I am not an expert on AI! But the field has been taking so 
much room that I could not leave it unexamined. Actually I have taken 
keen interest in the related field of Monte Carlo Markov Chain (MCMC) 
already for the past 15 years. 

1. Basic principles
1.1. Optimization

An intelligent solution is one which tries to find the best analysis, best 
answer, best action in a certain context. So artificial intelligence will often 
be about optimizing. Linear optimization, in which the constraints and 
functions to optimize are all linear, has a rich theory with a lot of structu-
re; but apart from that peculiar setting, not many methods are known for 
optimization when the setting is rather general. 

By far the most popular general method of optimization is gradient 
descent: follow the gradient. For instance, to find the highest point in a 
landscape, just look for the direction in which altitude increases fastest, and 
continue this way. In nature, optimization is supposed to work in a diffe-
rent way, namely through competition (as in natural selection). Parallel to 
that, there are algorithmic methods based on competition, be it through 
mutations, auctions or other mechanisms. 

Mutations introduce probability theory in the game, and huge progress 
was made when probabilistic and deterministic methods were mixed: these 
were, in particular, the MCMC methods, which go back to the forties but 
have become all the hype in the nineties. Consider again the problem of 
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finding the highest point in a landscape: with the gradient method, you 
will in general get trapped in a local optimizer. But MCMC can get you 
out of the trap, by randomly allowing some motions which will get you 
down, thus leaving a possibility to get to the next hill and in the end to ar-
rive at the true peak. And when arrived at that true highest peak, one will 
also, from time to time, get down the hill, so that the information is about 
the time spent in the various states. (And there are techniques to progressi-
vely make the exploration deterministic, so that one may eventually settle 
in the culminating point, or at least a very high peak). 

Whatever the technique used, the field of artificial intelligence strongly 
depends on optimization.

1.2. Learning

But besides the notion of intelligence there is of course not just the 
notion of finding an optimal, or at least good, response. It should also adapt 
to the situation, and do things which it was not explicitly told to do. Or, 
to use a phrase by Samuel (1959), the program should have “the ability to 
learn without being explicitly programmed”. 

The field of machine learning is about letting an algorithm discover 
by itself a good way to handle a problem, through reviewing information 
and adapting to that information. One of the very first such systems was 
Shannon’s electric mouse, Theseus (1952), which would explore a maze to 
find the best way out. 

To continue with the analogy of finding the highest altitude, think that 
we don’t want to only find the peak, but also to find the shortest path 
between the starting point and the peak, taking into account what we 
explored. Or, more ambitiously and more interestingly, that we wish to 
discover recipes, learnt from examples, that allow us to find the peak very 
fast, if we are put in a new environment which shares certain features with 
the previous environments that we explored. 

A field of mathematics in which learning has always been at the core is 
Bayesian statistics. One wishes to evaluate the probability distribution of a 
certain set of parameters, and for that one starts with a prior distribution, 
then updates it with all the knowledge gained from successive information. 

1.3. Classification

Imagine that you have a number of observations falling in several cate-
gories: maybe just two categories, A and B. You would like to describe the 
difference between A and B in the shortest possible way. In mathematical 
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terms, it could be about separating the phase space in two regions, through 
an easily described interface, in such a way that all A observations lie on 
one side, and all B observations lie on the other side. 

The best situation is when you can find a hyperplane to do this sepa-
ration job; by the way there is a long tradition of separating hyperplanes 
in the context of convexity theory. But of course, most of the time you 
will not be able to do so. On the other hand, it might be that a change 
of parameterization gives rise to such a possibility. This is the principle of 
the method of linear classifiers (so strongly associated to machine learning 
that an icon about this principle was chosen as the logo of the machine 
learning Wiki!).

1.4. The curse of dimensionality

In practice the learning problem stumbles across the major problem that 
the phase space is huge. Already in the simple Theseus problem, the phase 
space is not the board on which the mouse crawls, but rather the set of all 
paths in this board, so there is a combinatorial increase of the complexity. 
But in any realistic problem things are way worse in terms: for combina-
torial or complexity questions, problems have to be set in large dimension. 
Consider the problem of figure recognition: possible variations in shape of 
written numbers imply that the unknown lives in a space with dozens of 
dimensions. In some currently used modern models for semantic analysis, 
language representation occurs in a 300 dimensional space. In phylogenetic 
reconstruction, the number of possible trees is beyond imagination (500 
taxa can be arranged in more than 101275 trees!) 

In the absence of specific information to reduce this high dimensio-
nality, there is absolutely no hope to explore the set of possibilities via 
deterministic, systematic methods. Some guesses have to be made, and one 
has to resort to chance in a way or another. A good news is that random 
exploration will give, in many cases, surprisingly efficient methods. A bad 
news is that it is not really understood why. Another bad news is that there 
is in general no way to be completely sure that the method will achieve 
the desired goal.

1.5. The extraction of meaning

There is a classical distinction between information, knowledge and 
wisdom. How to get the wisdom from the knowledge, and the knowled-
ge from the information, are longstanding multi-faceted questions. Henri 
Poincaré said it beautifully: An accumulation of facts is no more a science 
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than a heap of stones is a house. The scientist has to order. But in our 
current era a no less pressing problem is to extract information from data. 
Indeed, the amount and size of data, which are considered, makes it impos-
sible to just examine them with human senses and brains. 

Some of the most important beliefs underlying current techniques are: 
Belief 1. It all boils down to a “reasonable” number of parameters. That 

means, even if the data we are observing give information about a mil-
lion sets of measurements in a space of several hundreds of dimensions, 
eventually we should be able to classify all this information according to a 
rather small number of parameters, say 10. 

To give an example among a multitude, a case which became infamous 
recently in relation with automated election campaigning, is the OCEAN 
model (Openness, Conscientiousness, Extraversion, Agreeableness, Neu-
roticism) which was used to re-present personality traits of users in social 
media. In this model, all the complexity of behaviours was summarized in 
a five-dimensional space. 

Belief 2. We may let the algorithm discover (with or without precise 
instructions) these explanatory parameters. 

For a long time statisticians have developed methods of “exploratory 
factor analysis” to identify the determining parameters in a multivariate set 
of data. Model selection is about finding the good compromise between a 
too precise and a too rough description of multiparameter problems. On 
the other hand, some of the new artificial intelligence methods perform 
such a task by very indirect ways. 

While “understanding” is, in a way, about finding the best way to sort 
things out, this can serve a diversity of purposes, in particular: compress 
data, recognize data, react to a situation, or generalize data (either by inter-
polation or by extrapolation).

1.6. Parsimony and extrapolation

Implicit in the previous discussion is the notion of economic represen-
tation of the information. This underlying general principle is also made 
explicit in parsimony theory, in the form of a minimization problem, whi-
ch has a taste of the entropy problem in statistical physics. 

Parsimony could be summarized as follows: given an incomplete set 
of data, let us find the data, which complements the set in such a way as 
to achieve minimal “complexity”. There is a certain art in choosing what 
complexity here means, and it can be based on phenomenology as well as 
on fundamental principles. 
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2. Some applications 
Applications of artificial intelligence are now legion, and underlie a 

large part of the current innovation. Here is a very partial list. 
–	 Pattern recognition: e.g. the algorithm will guess that the image which 

is presented to it is that of a Panda bear or a “priority road” sign or so-
mething else, and it will give a “confidence percentage”. 

–	 Prediction: For instance, it is through the sole use of data given by so-
cial users networks that the company QuantCube, specialized in data 
analysis, successfully predicted the election of Donald Trump at the Pre-
sidency of the USA, even though with a tiny margin of confidence. 

–	 Preference guesses: from the behaviour of a list of users, and partial 
information about the behaviour of another user, guess what the latter 
prefers to see, hear or feel. The most famous example is the “Netflix 
problem”: given an incomplete table of preferences for a large list of 
users (this user loved this movie and hated that one, etc.), and an in-
complete set of preferences for another user, guess what he or she will 
love or hate. Accurate preference guesses are a holy grail in the fields of 
advertising, selling, but also for opinion campaigns. 

–	 Translation: Google Translate rests on statistical methods of machine 
learning much more than on grammatical analysis. 

–	 Composition: For instance, using artificial intelligence researchers have 
composed songs in the style of the Beatles, or automatically generated 
short movies from a selection of images, etc. 

–	 Diagnosis: Expert systems such as IBM’s Watson guess a likely disease 
based on symptoms, or evaluate a situation based on measurements; si-
milarly, banks detect transactions with a high risk of being identity thefts. 

–	 Clustering and sorting: For analysis of relations between words, langua-
ges, species, etc. 

–	 Automation: self-driving cars, drones, etc. 
–	 Interface man-machine: for instance through commands which adjust 

to the person’s mentality or even thoughts; evolutive prosthetics which 
learn the morphology of the body. 
Etc. Machine learning has become so routinely used, and with such a 

diversity of tricks, that competitions are now regularly organized between 
teams to select the most efficient method. The most famous of these pla-
tforms is the website www.kaggle.com 

Implications of these methods are not only in technology: they also 
suggest new trends to scientists, even though often resting on somewhat 
shaky ground. 
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Let me comment on four examples which I came across recently. 
-	 Inria in France has several projects based on robotics control: the mo-

tion of the eyes, or even just the thoughts (through recording of the 
brain activity), would be able to pilot a drone or robot. 

-	 Microsoft Research in Asia developed an algorithm to generate avatars: 
it uses a collection of pairs (photograph of a face, artist’s rendition) to 
develop its own recipe imitating the style of the artist. Thus when a new 
photograph is provided, the algorithm will suggest a translation in the 
style of the artist. 

-	 A biology research paper published in September 2016 suggested that 
there were four species of giraffe in Africa, rather than one; it was based 
on learning from large samples of genetic data. (This is an example in 
which a scientific field is changed by the use of artificial intelligence). 

-	 Riccardo Sabatini and his team showed how to teach a machine-lear-
ning algorithm to reconstruct the face of a human from the DNA sam-
ple. This is a typical case of application of machine learning: on the one 
hand the data is absolutely huge, on the other hand the correspondence 
between the data (genotype), and the expected outcome (phenotype) 
has famously remained a nightmare for geneticists. 

3. The algorithms 
3.1. Trends

Machine learning encompasses a diversity of techniques and tricks. Se-
arching online it will be easy to find some lists and selections of them, such 
as “Top 10 machine learning algorithms” etc. Buzzwords evolve as new 
algorithms demonstrate their efficiency. A few years ago in lectures on the 
subject you would hear a lot about SVM (Support Vector Machines); now 
it is Deep Learning which gets the most credit. 

The example of Deep Learning shows that it is important to retain a 
diversity of methods, and some unconventionality. Indeed, not so long ago, 
most of the renowned experts in the field would dismiss neural networks 
as inefficient and doomed; but the tenacity of Yann LeCun demonstrated 
that these methods can be amazingly efficient. 

A beautiful reference about the many facets of artificial intelligence, at 
least up to a few years ago, is the book by Russell and Norwig. To get some 
glimpses of the state of the art in current artificial intelligence research, one 
may watch the online videos of the following emblematic events: 

(a) The plenary lecture of Emmanuel Candes at the International Con-
gress of Mathematicians in Seoul (2014), about parsimony methods applied 
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to preference guessing as well as medical imagery; themes such as the right 
definition of “complexity” of an image, or the mathematical justification 
of the method, are enlightening. 

 (b) The course by LeCun at Collège de France in Paris, and the semi-
nars given there, e.g. by Ollivier and Mallat, which will provide a diverse 
view as well as many questions. 

A general remark is that, eventually, artificial intelligence algorithms 
boil down to technical keywords such as large matrix diagonalization, con-
vex optimization, gradient flows etc. which to an outsider hardly evoke 
anything related to “intelligence”. 

3.2. Neural networks

Neural networks is just one of many fields in Artificial Intelligence. But 
it has become such a craze that it deserves a specific review. Let me just 
mention that 
–	 Neural networks use a list of examples which we may write (x

i
, h

i
), 

and the goal is to produce a “rather simple” function h in such a way 
that h(x

i
) ≃ h

i
 ; in other words it is about guess an unknown function 

through examples; 
–	 Neural networks are made of nodes (neurons) and links (synapses); whi-

le the general pattern is inspired from animal brains, the organization 
is quite different; nowadays the neurons are organized in a rather large 
number of layers (depth), with synapses joining neurons from one layer 
to the next one; 

–	 Each synapse corresponds to an elementary nonlinear function, ap-
proximating a step function, and depending on some parameters; this 
mimics the fact that a synapse can transmit more or less information, 
and does so only at a certain level of excitation; so a function is a com-
bination of elementary nonlinear functions; 

–	 The number of neurons can be very large nowadays, with millions of 
parameters, and actually large neuron networks have achieved amazing 
results these past few years; 

–	 The optimization procedure is based on a gradient flow method, here 
called “back-propagation”. 

I refer to the lecture of Yann LeCun for more information about networks 
and their use. I also refer to the lecture of Demis Hassabis for an in-depth 
discussion of the spectacular and instructive case of the AlphaGo program, 
which achieved world fame by demonstrating its super-human level at Go 
and showing at the same time what could be considered as creativity. 
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It is important to point out some conceptual differences between Al-
phaGo and a “classical” algorithmic approach to Go playing. AlphaGo 
achieved its super-human power by an extraordinarily intense training, ta-
king primary examples from recorded Go games by humans. The particu-
lar rules which AlphaGo applies do depend on the particular examples that 
it was fed. But also, AlphaGo spent an enormous amount of time playing 
against himself and trying random departures from the sets of games it was 
given. Thus a good amount of randomness enters the making of Alpha-
Go, first through the selection of games it is primarily fed with, secondly 
through these random variations that it is trying. 

4. Big Scientific Questions 
The brilliance of programs such as AlphaGo, or the ever-increasing 

number of applications and programs which use modern AI, demonstrate 
the impact of these methods. But still this comes with big questions. 

4.1. Why does it work so well? 

This question, which is formulated verbatim in Mallat’s contribution 
at the Collège de France, is on the lips of every researcher, especially since 
the surprise comeback of deep neuron networks. In fact, these methods 
are vexingly efficient, and took theoreticians off guard. For sure there is, 
among other things, an effect of the “Big” factor. It has been noted already 
some time ago that the most important asset of a database is its size; inac-
curacies being washed out by the sheer number. With modern methods we 
also see that size does matter. 

As Ollivier emphasizes in his own contribution, to better understand 
this question there is need for a much more conceptual modelling, with a 
geometric study of the phase space and the process. 

A related question is: which problems can be solved? Mallat likes to 
formulate this in term of three keywords which are well known to harmo-
nic analysts: complexity, regularity, and approximation theorems. Working 
in the particular context of parsimony methods, Candes insists on three 
ingredients for success which seem important: (i) structured solutions (the 
fact that only a few parameters really count; mathematically speaking this 
would be, typically, about a matrix having small rank, or being very clo-
se to having small rank); (ii) the ability to use convex programming for 
computational purposes; (iii) incoherence, that is, the fact that the missing 
information does not present any particular pattern in respect to the key 
parameters. With a proper mathematical formalization of these assump-
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tions, Candes and Tao are able to prove a few neat mathematical theorems 
showing accuracy of the reconstruction for “most” samples. 

Yet another related question, obviously, is: can one make those algo-
rithms more efficient? There is real motivation for this, as modern algo-
rithms are, by any rate, inefficient: they are very demanding in terms of 
storage, go through datasets dozens or hundreds of times, use up absurdly 
enormous power if we compare them to a human brain, do not yet adapt 
to quantum algorithmics... 

Part of this inefficiency is also due to the use of randomness, which is 
typical (randomness is inefficient but in complex phase spaces all other 
methods are usually worse). Arguably, it may also be due to the poor incor-
poration of rules and semantics in the search for representation. 

4.2. MCMC methods

I would like to recall that MCMC methods were all the buzz in the 
1990s to magically solve problems with large phase spaces. The articles by 
Persi Diaconis on this MCMC Revolution are very instructive. 

Arguably, MCMC was a particular case of machine learning, with a 
modelling (the probability distribution) which was improving with the 
amount of data, using randomness and gradient flow optimization. 

But the analogy does not stop here: some of the same questions as above 
were also central: Why does it work so well? Which are the geometrical or 
structural conditions which make it work well, and so on? 

Diaconis, who became famous for his discovery of the cut-off effect in 
the convergence of Markov chains (that is, the fact that the convergence 
often occurs very rapidly after a certain time, going in a small number of 
iterations to “hardly mixed” to “very much mixed”), has been fascinated 
by the problem of mathematically explaining the efficiency of MCMC 
methods. Together with Michel Lebeau and other collaborators, he worked 
on analysing this in controlled cases with very simple rules. The results, 
which appeared on the prestigious journal Inventiones, are fascinating: even 
if the model is oversimplified, they are based on an amazing level of ma-
thematical sophistication, and the convergence estimates are quite conser-
vative. While these authors have established admirable pioneer work, it is 
likely that there is still room for huge improvements. 

By analogy, the following question is very natural: Is there a sharp cut-
off effect for AI algorithms, in terms of the size of the data, or the number 
of parameters? 



ARTIFICIAL INTELLIGENCE – BIG ACHIEVEMENTS AND HUGE QUESTIONS VIEWED FROM MATHEMATICS

Power and Limits of Artificial Intelligence 29

4.3. What about our intelligence?

The dream of the founding fathers was that artificial intelligence would 
lead us to a better understanding of our own intelligence. So far this has 
not borne so much fruit. On the contrary, some striking experiments sug-
gest that our algorithms are very different from those which are used in 
AI. Maybe none is more spectacular than the correlated noise attacks per-
formed by Christian Szegedy: from an image which is clearly recognized 
by the algorithm (say a truck), a tiny modification (invisible to a human 
mind) will fool the algorithm into recognizing an ostrich, with extremely 
high confidence. 

Even without this, the inefficiency of artificial algorithms with respect 
to natural ones has been an elephant in the room: just a few observations 
are sufficient for a human to identify a pattern, where machine learning 
algorithms need huge numbers of them. 

In such situations, however, comparison between natural and artificial 
mechanisms has helped suggesting new research directions, such as rein-
forcement by adversarial training (see LeCun’s lecture), or the modelling 
of universes with categories and subcategories (see Tenenbaum’s lecture). 

Also, at qualitative level, some striking suggestions have been made by 
Dehaene, for instance about the encoding of numbers in the brain, based 
on artificial neuron networks. 

It is likely that these features (strong discrepancy between natural and 
artificial algorithms, but mutual influence in their understanding) will con-
tinue, and that little by little we shall identify some ways to model some 
human intelligence features through AI.

4.4. Epistemological questions

Will AI be able one day to do science, to out-perform human scientists, 
or, more modestly, to help humans finding new science models, or science 
laws? 

Mathematics has been a favourite science in this question, probably be-
cause (a) mathematics does not explicitly rely on experiments, (b) mathe-
matics is the only science in which the rules of the game are fully known, 
(c) mathematics is both familiar to and admired by the (mostly geek-type) 
conceivers of AI programs. So the idea of a theorem-proving AI is a widely 
shared dream in AI. 

Besides mathematics, one could hope for AI to identify patterns, for-
mulas, or even equations, without “proving” them, but showing that this is 
how nature works. 
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One may object that mathematical proof requires exploration of an 
extraordinary combinatorics. Automated proof checking has gone a long 
way forward, but there is a whole world between proof checking and proof 
making. 

One may also object that machine-learning methods, based on exam-
ples rather than models, will be poor at discovering new laws and reasons. 
But on the other hand, we have examples in science of laws which were 
first discovered through the examination of data and later turned into laws: 
one of the most famous is Kepler’s law of elliptical orbits. 

Still, so far the harvest is meagre. It is true that a computer program has 
been good at deriving the basic laws of Hamiltonian mechanics, and that 
some expert systems have managed to prove some nontrivial geometry 
theorems, but the whole of such achievements remains a tiny portion of 
science, and I am not aware of any novel law which has been found throu-
gh AI. Let me also bring back the spectre of MCMC by recalling that it 
was originally used to discover the phenomenon of hard spheres transition; 
but that nobody has been able to justify or understand this phenomenon 
in more than half a century. 

For the moment we may just say that time will tell!? 
Now, one may for sure be more optimistic in the prospect of an AI-ai-

ded scientist, and there are already such examples, especially in biology. 
In his seminar, Mallat also shows how to use AI to derive the shape of an 
unknown energy in a mathematical physics problem. 

However, these are not really about finding new laws, but about finding 
new ways to organize a complex given information. Here, for sure the 
most important themes revolve around genetics and related fields, such as 
phylogenetics and taxonomy. 

An example of progress in the field of taxonomy is the recent work 
on giraffe genomes, which suggests that there are actually four species of 
giraffes (note that the notion of giraffe is no longer clearly defined!). As 
for the field of phylogenetics, which aims at identifying the “parenthood” 
relations between species, a recently debated issue was the respective places 
of Archaea, Bacteria and Eukaryots. In these fields MCMC and other ma-
chine learning methods have been used on large genomic samples. This is 
exciting, but leaves some big questions. 

A first big question is how will researchers master these tools, and most 
importantly the safety rules for their use. Thinking again about MCMC, 
there is a well-known course by Alan Sokal warning users that results obtai-
ned by MCMC have no scientific value whatsoever if they do not come 
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with justification of the convergence times and sampling rates through an 
estimate of features such as the autocorrelation times. It is likely that most 
of the published scientific literature based on these techniques does not 
perform such checks. Of course debates follow. 

A second one is about the epistemological status of advances which 
have been obtained through AI algorithms. There is usually no proof of 
convergence of such algorithms, and thus no way to guarantee the accu-
racy of the method. Should we admit them as evidence, knowing that they 
use randomness and other black box features? 

A third big question is about the meaning of “understanding”.  AI methods 
have made huge progress when we became more lenient in our demands for 
understanding the rules which produce the results. The good thing is that 
the algorithm does usually much better than what we could imagine, but 
the bad thing is that we don’t understand the reasons for the outcome, even 
when we have it. To remedy this, one should work (and one already works) 
on the way to display and propose the results, singling out those parameters 
which played a most significant role in arriving at the result. 

A final big question is the risk of seeing drops in the mastering of entire 
chunks of scientific skills, namely in the modelling. For instance, in ma-
thematical finance, stochastic modelling is rapidly giving way to big data 
analysis. One certainly should rejoice about this diversification, but one 
can also worry that stochastic finance analysis, based on modelling, may 
soon be forgotten by younger generations of finance mathematicians. The 
same can be said about many fields. Whatever point of view one wishes to 
adopt, it is important to recall that in a classical scientific view, understan-
ding always includes modelling, and it is certainly foolish to believe that 
data will get rid of that. Just think of the big difference between cause and 
correlation, that only a model can bring!

5. Big Societal questions 
AI methods have invaded most fields of technology and will very likely 

be used more and more, for more and more tasks. This is a partly comfor-
ting, partly worrying trend.

5.1. How robust is AI?

Szegedy’s experiments have shown that AI-based recognition may be 
fragile, and possibly subject to attacks exploiting the fact that it has been 
trained in a certain way. Currently, AI remains so far good for specialized 
tasks (like playing Go!) and this may lead to a lack of stability and robustness. 
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It is notable that one of the most promising directions of research in AI, 
namely adversarial learning, is precisely aimed at making learning algori-
thms improve by challenging them in situations of ambiguity (as when one 
is training a youngster by giving exercises with traps). 

In the case of AlphaGo, Lee Sedok was able to fool the algorithm once 
by leading it into a highly non-comfortable zone that it had not explored 
enough. This is reminiscent of human strategies against chess programs. It 
certainly would be impossible with the current version of AlphaGo, which 
is way stronger than the one which Sedok played against. But it shows that 
it is not easy to ascertain the robustness of AI. 

5.2. Who will take responsibility? 

The achievements of AI are impressive, but the convergence is not gua-
ranteed, the mechanisms remain mysterious. Who will take responsibility 
in case of legal battle or policy change? The question may be asked for an 
automatic driving car, but also in a number of other situations. For instan-
ce, it is now possible, through AI, to get a rather good reconstruction of the 
face through DNA sample: can this be used in a criminal case? 

Then, there are discriminations which may come in AI programs. What 
happens if an AI program automatically leads to different rules and beha-
viours in front of different ethnical groups, or social groups? Such situa-
tions have already occurred.

5.3. Biases

The case of Tay, the chatbot by Microsoft, has been on the media: that 
AI was influenced and manipulated by users which transformed it quickly 
into a horrible racist (and, by the way, a worshipper of Donald Trump). 
This shows that AI, like humans, may inherit strong biases from their envi-
ronment, impairing their tasks. 

Currently, the method of building an AI, through example-intensive 
machine learning, leads to biases: the program will depend on the databa-
ses which we use. A 2016 paper by Caliskan-Islam, Bryson and Narayanan 
was pointing that Semantics derived automatically from language corpora 
necessarily contain human biases.

5.4. Myths and fears

AI has triggered a number of myths and fears already. One is the emer-
gence of a super-human intelligence. The way some authors talk about it 
makes it closer to religion than science. By the way, this was the subject of 



ARTIFICIAL INTELLIGENCE – BIG ACHIEVEMENTS AND HUGE QUESTIONS VIEWED FROM MATHEMATICS

Power and Limits of Artificial Intelligence 33

a terrible movie, Singularity (translated in French by Transcendence, which 
had a very clear christic analogy). It is certainly a good advice to try and 
keep being objective. 

Another fear is that humans will lose their thinking abilities relying too 
much on AI. Actually there has always been a transfer of tasks from humans 
to technology as the latter improves (for instance we are not so keen now 
about memorizing or computing since our books and computers do it so 
well for us). This debate was already going on at the time of Socrates with 
the technology of writing. 

On the other hand, new technologies also come with new challenges, 
new ways to entertain. Computers have taken some abilities from humans, 
but also brought new abilities! 

Also, a striking case in point about the AlphaGo experiment is that the 
new supremacy of algorithms on humans did not seem to deter humans 
from playing Go; actually, as Hassabis pointed out, the sales of Go games 
skyrocketed as a consequence of the competition. Playing with humans is 
a human activity after all.

5.5. Economics

In the field of economics and collective social affairs, things may be 
more worrying. So far the two main areas of concern are (a) robotization 
which may, to some extent and for some time, deprive humans of jobs, 
and (b) over personalization of interactions which may create bubbles and 
weaken the cohesion of society. Let us briefly discuss both. 

The replacement of humans by robots and algorithms in certain tasks is 
a robust trend. In the case of AI it typically concerns medium skills (not the 
lowest, not the highest). As one example among many, in 2016 Foxconn 
has announced the replacement of 60,000 factory workers with robots. 

The replacement of jobs may take place at the level of production si-
tes (factories, companies) but it may also go in the interaction between 
humans and the task. Famous cases are those of photograph developers 
or travel agencies: those have mostly gone now, and users are handling it 
themselves with the technology. The same may occur with AI. Bankers, 
taxi drivers, generalist doctors, are all categories for which speculations are 
going on. Short-time traders are a famous category which was upset by 
algorithms, and there is hardly any doubt that finance will rely more and 
more on AI, jeopardizing classically trained finance officers. 

In a Schumpeterian view, one may argue that these jobs will reappear 
in another format. But the characteristics of the present wave (so strong, 
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so versatile, so quick, so globalized) make it possibly different from the 
previous ones; it may be that the “creative destruction” takes quite a long 
time by human life standards. The positive part of it is that there will be 
a whole chunk of new, high-level jobs devoted to interpreting, mastering 
or accompanying AI; so a bright future opens up for related jobs. In this 
context, statistician was elected CareerCast’s “Best Job of 2016”. 

The second main concern is about the over efficiency of algorithms in 
personalizing the interaction. A few years ago the public diffuse fear with 
algorithms was mostly about a systematic uniform treatment for everybo-
dy, and it is ironic that now it is the other extreme which arises fears. 

While personalization is certainly good news in certain fields (perso-
nal medicine for instance), it may be a problem in respect to solidarity. 
Insurance is about sharing risks, but if risks become tailor-made for each 
individual, the solidarity may effectively disappear. Profiled news will get 
citizens exactly the information which they wish to hear. Profiled politics 
will get the politicians to adapt their speech and convictions to exactly 
what their electors wish to receive; and it will help their campaign teams 
manipulating their opinions. Profiled suggestions will at the same time 
keep customers in their preferences and satisfy them (it was recently a 
sensation when it was found that Netflix used some 80,000 subcategories 
of users). Profiled advertisement will help trick customers into buying 
(while already trying to cover up the profiling by inserting some more 
random advertisement). All this is so efficient that it may have a destabi-
lizing effect in a number of human affairs. Actually there is already ample 
clue that Big Data and AI methods played a significant role in both the 
controversial Brexit campaign and the controversial Trump campaign. In 
the same way as the narrative of Internet has been switching from free-
dom to mass surveillance and from sharing to bubble creation, it is possi-
ble that the narrative of AI will switch from fine support to manipulation. 
Already a notable book has appeared by the mathematician O’Neil with 
a strong title that says it all: Weapons of Math Destruction: How Big Data 
increases inequality and threatens democracy. This evolution, in conjunction 
with uncontrolled phenomena of fake news, “trolling”, distortions and 
the like, may possibly be one of the most important problems facing hu-
manity currently. 

Let us also note that these topics are still controversial (as shown by 
Mark Zuckerberg’s recent statement in disbelief of bubbles), that the envi-
ronment is rapidly evolving, and that experiments are virtually impossible 
to do; so that it is not clear if the subject is amenable to science.
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5.6. Human-AI interaction

One of the most fascinating features with AI is the interaction between 
humans and algorithms. This comes together with issues of human-human 
interactions. 

It was already noted that human-AI matches do not deter human-hu-
man games. In medicine, algorithms may soon be able to outdo humans in 
diagnosis, but the patient-doctor relation is also one of human trust, and 
patients are certainly not ready to confide their emotions and fears to an 
algorithm (even though, on the contrary, some humans are much more 
comfortable to confide their traumatic experiments to neutral robots than 
to fellow humans). Because of this, or thanks to this, the paradigm of the 
medical doctor using AI is bound to be much more powerful than just the 
medical doctor or just AI. 

Related to trust are subjects of responsibility and explanation procedure. 
It has already been widely debated that the responsibility issue for automatic 
car driving may be quite tricky. Also, even though automatic driving will 
certainly be more secure than human driving, some people object to, or fear 
putting their lives in the “hands” of an algorithm. In this case the job of dri-
ver cannot be considered similarly as the job of medical doctor: first because 
the affective bond between passenger and driver is much weaker than the 
bond between patient and doctor, but also because a human driver is very 
poor at securizing an automatic car (for taking the sequel of an automated 
procedure, or intervening in an emergency procedure, we humans are very 
bad). So the automatic car will basically have to be fully automated. 

As a different example, consider the problem of detection of frauds 
by identity thefts. Already in the nineties, major companies were using 
insurance procedures and a certain number of rules to refuse transactions 
which were considered “fishy”. In the absence of any explanation and 
any interaction, these gave rise to infuriating incidents. Nowadays banks 
are equipping themselves with AI-based recognition algorithms for what 
is fishy and what is not. When this is well designed, this comes with hu-
man arbitrage, explanation, and reaching out to the customer (through cell 
phone, for instance), so that responsibility is clear and interaction with the 
customer can take place. Of course budgetary issues, efficiency, trust to the 
consumer, and so on, will also be elements of choice for a bank company 
willing to improve in this direction. 

It is certainly an interesting multidisciplinary subject to understand 
when the human-AI combination is an improvement and when it has to 
be fully human, or fully AI. 
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In any case, in such a context, the education of a wide audience to the 
basic principles of AI, with their powers and limitations, seems like a wise 
society option. 
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The Cerebral Cortex: 
An Evolutionary Breakthrough
Wolf Singer

The evaluation and encoding of perceptual relations
Living systems have to establish models of the world in which they 

evolve in order to be able to predict the outcome of actions and to there-
by assure survival and reproduction. Establishing a good model of the 
world requires the detection of relevant and consistent relations between 
features of the environment and the efficient storage of these relations 
(rules). The simplest solution, found in virtually all neuronal systems, are 
relation encoding feed-forward circuits. Neurons tuned to respond to 
particular features of the environment converge on common target cells 
and these respond selectively to particular conjunctions of features pro-
vided that the gain of the input connections to these conjunction specif-
ic neurons are appropriately adjusted (Barlow, 1972). A particular relation 
among features gets encoded in the discharge rate of a neuron responding 
selectively to this relation. Because this neuron encodes always the same 
relation, one talks about a “labelled line code”. In order to evaluate and 
encode combinations of relations (relations of higher order) this process 
of input recombination and gain adjustment is iterated across successive 
layers. This basic principle for the evaluation, encoding and classification 
of relational constructs has been implemented in numerous versions of 
artificial neuronal networks (Rosenblatt, 1958; Hopfield, 1987; DiCarlo 
and Cox, 2007; LeCun et al., 2015). The highly successful recent devel-
opments in the field of “deep learning” (LeCun et al., 2015), capitalize 
on the iteration of this principle in large multilayer architectures. As far 
as feed-forward connections are concerned, these artificial multilayer sys-
tems resemble the organization of sensory systems in the brain. Marked 
differences exist, however, with respect to other essential features. Feed-
back or recurrent lateral connections are prominent in brains (Markov et 
al., 2014; Bastos et al., 2015) but implementation of these architectural 
features is still rare in artificial systems. Moreover, the training mech-
anism used in technical systems for the supervised adjustment of the 
synaptic gain of connections, the so called “back-propagation algorithm” 
is biologically implausible and differs from both unsupervised and su-
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pervised learning mechanisms implemented in brains (Feldman, 2012; 
Singer, 2016). 

A complementary way to detect and encode relations between signals is 
to evaluate temporal contingencies: If event A consistently precedes event 
B, event A is likely to be the cause of B, if A and B often coincide the two 
events most likely have a common cause and if A and B are uncorrelated 
in time they are most likely unrelated. 

The learning rules implemented in nervous systems are adapted to eval-
uate such temporal relations and to translate them into lasting changes of 
coupling. Both the traditional Hebbian rules (Hebb, 1949) and the more 
recently discovered mechanisms (Stiefel et al., 2005; Holthoff et al., 2006; 
Carvalho and Buonomano, 2011; Grienberger et al., 2015) evaluate tem-
poral relations among converging inputs as well as between pre- and post-
synaptic activity (spike timing dependent plasticity – STDP), (Markram et 
al., 1997; Bi and Poo, 1998). The molecular mechanisms underlying these 
use-dependent synaptic modifications operate with a temporal precision in 
the millisecond range. This has two important implications: First, it implies 
that the precise timing of spikes in converging pathways matters in deter-
mining the occurrence and polarity of synaptic gain changes. Second, the 
mechanism subserving synaptic modifications not only evaluates simple 
covariations between pre-and postsynaptic firing rates, but also evaluates 
causal relations. It increases the gain of excitatory connections whose activ-
ity can be causally related to the activation of the postsynaptic neuron and 
it weakens connections whose activity could not have contributed to the 
postsynaptic response. Thus, temporal relations reflecting semantic relations 
among events are evaluated by time sensitive mechanisms and converted 
into lasting changes of the coupling strength of interacting neurons. In this 
way statistical contingencies among features of the sensory environment 
are translated into synaptic weight distributions in neuronal networks. 

This time sensitivity of synaptic plasticity mechanisms has deep im-
plications for signal processing. If the known plasticity mechanisms are 
used for the storage of relations in general, all relations eventually have to 
be expressed as temporal relations among distributed neuronal responses. 
Thus, for the association of responses that lack temporal structure or are 
offset in time by intervals longer than those bridgeable by the time con-
stants of the molecular processes, mechanisms are required that endow 
neuronal responses with temporal structure and permit bridging temporal 
gaps. Otherwise rather different and still unknown mechanisms of synaptic 
plasticity have to be postulated. 
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Mechanisms for the generation of temporally structured activity
Results from an initially completely different line of research suggest 

the existence of mechanisms capable of imposing temporal structure on 
neuronal activity and of making perceptually related responses coherent 
in time. It had been discovered with multisite recordings from the visual 
cortex that cortical circuits have a high propensity to engage in oscillato-
ry activity and that these intrinsically generated oscillations can become 
synchronized, leading to correlated firing of the synchronously oscillating 
neurons. Of particular importance is the fact that this temporal coordina-
tion is dynamically regulated. It is context sensitive and reflects meaning-
ful relations among encoded features (Gray and Singer, 1989; Gray et al., 
1989). One reason for the synchronization of neurons encoding features 
that should be bound together is that the reciprocal connections between 
the neurons are adaptive and undergo Hebbian modifications. As a conse-
quence they strengthen between neurons that encode features which have 
a high probability of co-occurring in natural environments. As increased 
coupling among oscillators enhances the probability that they synchronize 
(Kuramoto et al., 1992), synchronization probability reflects the probabil-
ity of feature contingencies. Thus, neurons encoding features that often 
co-occur, e.g. because they are constitutive for a particular object, have an 
increased likelihood to synchronize and to form a coherently active cell 
assembly. The saliency of their responses is enhanced jointly because syn-
chronous discharges have a stronger impact on target neurons (Bruno and 
Sakmann, 2006). Thus, synchronously oscillating cells convey the message 
that the features they encode should be bound together because they have 
a high probability to be related in a meaningful way, e.g. because they are 
constitutive for a particular object and therefore have often co-occurred 
in the past (for review see Singer, 1999; Engel et al., 2001; Fries, 2009; 
Uhlhaas et al., 2009). Initially, the synchronization was seen as a relation 
defining mechanism mainly in the context of low-level visual processes 
such as feature binding and figure ground segregation. The reason was that 
synchronization probability reflected well the common Gestalt criteria for 
perceptual grouping and also reflected the architecture of the recurrent 
connections in the visual cortex that couple preferentially neurons cod-
ing for features which tend to be bound perceptually (Löwel and Singer, 
1992). However, it soon turned out that synchronization of oscillatory 
activity is not confined to the visual system but a ubiquitous phenomenon 
(for review see Buzsáki et al., 2013). What makes these dynamic phenom-
ena particularly interesting is the fact that they result from highly dynamic 
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self-organizing processes that enable rapid reorganization of the temporal 
coherence of the responses of widely distributed groups of neurons. For 
this reason synchronization of oscillatory activity is now considered by 
many to serve a large number of different functions that have in common 
the requirement for temporal coordination of distributed neuronal re-
sponses. Examples are the enhancement of the saliency of responses (Fries 
et al., 1997; Biederlack et al., 2006), the dynamic formation of functional 
networks (Siegel et al., 2015; Fries, 2005; Deco and Kringelbach, 2016), 
the selection of responses by attention mechanisms (Fries et al., 2001a), the 
matching of top down signals with sensory input (Bastos et al., 2015), the 
parsing of speech signals (Ding et al., 2016) and the definition of relations 
in the context of learning and memory (Siapas et al., 2005; Fell et al., 2011; 
Yamamoto et al., 2014; for review see Singer, 2016).

Complex dynamics
As more laboratories engaged in multisite recordings, a prerequisite for 

the analysis of the correlation structure of neuronal dynamics, it became 
clear that oscillations with constant frequency sustained over long time 
intervals and synchronization of these oscillations with stable phase rela-
tions occur only under specific stimulation conditions. Especially the high 
frequency oscillations in the beta and gamma frequency range were found 
to exhibit a much more complex and variable dynamics than reported 
in the early days of their discovery. In the visual cortex, the frequency of 
stimulus-induced oscillations increases with the energy and the complex-
ity of the stimuli and with their motion speed (Gray et al., 1990; Kayser 
et al., 2003; Ray and Maunsell, 2015; Lima et al., 2011). The amplitude of 
stimulus-induced oscillations decreases with the complexity of the induc-
ing stimuli and increases with attention and expectancy (Lima et al., 2011; 
Fries et al., 2001a). Moreover, in awake behaving animals the oscillations 
are usually transient, occur as brief bursts (Pipa and Munk, 2011; Lundqvist 
et al., 2016) and are often coupled with the phase of other oscillations 
that have lower frequency (cross frequency coupling, Canolty et al., 2010). 
Accordingly the pairwise correlations between oscillating cell populations 
are also highly variable. They are transient and exhibit phase shifts that vary 
over time (for review see Fries et al., 2001b; Maris et al., 2016). 

It has been argued that this high degree of variability of oscillations and 
synchrony is incompatible with a functional role of these dynamic phe-
nomena (Ray and Maunsell, 2015). This critique concerns both the initial 
postulate that temporal coherence serves to encode relations and the for-
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mation of assemblies in distributed coding regimes (Singer, 1999) as well 
as the extension of this concept known as the Communication Through 
Coherence (CTC) hypothesis (Fries, 2005). However, others have argued 
that variability and non-stationarity of the dynamics are necessary proper-
ties for flexible processing in order to comply with the speed and versatility 
of cognitive operations (Roberts et al., 2013) and with the requirement 
to configure on the fly functional networks on the fixed backbone of the 
cortical connectome (Deco et al., 2016). 

A unifying concept
These facts and arguments urge for a novel framework that attributes 

specific functions to the various manifestations of cortical dynamics and 
provides a cohesive interpretation of both low-dimensional states char-
acterized by sustained frequency-stable oscillations and high-dimensional 
states with complex and rapidly changing correlation structure. The hy-
pothesis proposed here is that the cortex exploits the high dimensional 
state space provided by the non-linear dynamics of recurrently coupled 
networks in order to perform flexible and efficient computation. In this 
framework, emphasis is placed on the characteristic parameters of self-or-
ganizing complex systems with non-linear dynamics. These parameters 
include changes in correlation structure, the entropy and dimensionality 
of distributed activity, network oscillations, synchronisation phenomena 
and phase shifts. The proposed computational strategy is likely to account 
for a number of hitherto poorly understood functions: The encoding of 
temporal sequences, the storage of vast amounts of information about the 
environment in the networks of sensory cortices, the ultrafast retrieval of 
information in processes requiring comparison between input signals and 
stored knowledge and the fast and effective classification of complex spa-
tio-temporal input patterns. 

Early theories of perception (von Helmholtz, 1867) have suggested that 
the brain interprets sparse input signals on the basis of an internal model of 
the world and these early ideas have received substantial support by studies 
on active sensing and predictive coding. The internal model is thought 
to build on inherited, genetically transmitted information and on knowl-
edge acquired by experience. The information provided by this model is 
used to reduce redundancy in sensory signals and to facilitate perceptual 
grouping, feature binding, classification and identification. Because of the 
daunting complexity of the visual world, the store containing such an elab-
orate model must have an immense capacity. Moreover, read-out must be 
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extremely fast to comply with behavioural evidence. When primates, in-
cluding humans, scan their visual environment, they change the direction 
of their gaze on average four times a second. Thus, the prior knowledge 
required for the interpretation of a particular input pattern needs to be 
accessible within fractions of a second. The proposal is that these condi-
tions can only be met if encoding, storage and processing of information 
take place in the high-dimensional state space provided by a complex system with 
non-linear dynamics. 

The hypothesis
Neocortex, especially its supragranular compartment, is ideally suited to 

provide such a high-dimensional coding space. It is a recurrently coupled 
network (Gilbert and Wiesel, 1989; Stettler et al., 2002), whose nodes are 
feature selective and have a high propensity to oscillate (Gray and Singer, 
1989). This network, so the assumption, provides the high-dimensional 
state space required for the storage of statistical priors, the fast integration 
with input signals and the representation of the results in a classifiable 
format. Statistical priors are supposed to be stored in the functional archi-
tecture of long-range horizontal connections and their synaptic weight 
distributions.

In this framework a number of experimentally testable predictions can 
be formulated. Spontaneous activity should reflect the dynamics of the 
structured network harbouring the entirety of latent internal priors and 
therefore exhibit very high dimensionality. Input signals are supposed to 
drive in a graded way the feature sensitive nodes and thereby constrain 
the network dynamics. If the evidence provided by the input patterns 
matches priors stored in the network architecture, the network dynamics 
will collapse to a specific substate, corresponding to a particular percep-
tual experience. Such a substate is expected to have a lower dimensional-
ity than the resting activity, exhibit specific correlation structures and be 
metastable due to reverberation among nodes supporting the respective 
substate. Because these processes occur within a very high-dimensional 
state space, substates induced by different input patterns should be able to 
coexist (superposition of information), outlast the duration of the stimuli 
because of reverberation and be well segregated and therefore easy to 
classify. They can then either serve as input to the next cortical processing 
stage, where the same matching process is iterated, albeit with different, 
more global and abstract priors, or they can be classified by local readout 
units that directly feed into executive centres. According to this concept 
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every cortical area has its own model of the world and these models differ 
in granularity and the degree of abstraction because of the mapping rules 
specifying the distribution and recombination of input signals across dif-
ferent processing stages. 

Experimental evidence
Preliminary evidence is already available for some of these predictions. 

Developmental studies support the notion that the statistics of feature con-
junctions in the outer world gets translated into cortical connectivity. Both 
feed forward as well as the reciprocal tangential connections in the visual 
cortex have been shaped during evolution and get further refined by ex-
perience dependent pruning to match the statistical properties of visual 
scenes (Hubel and Wiesel, 1962; Smith et al., 2015; Pecka et al., 2014; 
Eysel et al., 1998; Gilbert et al., 2009) according to a Hebbian mechanism 
(Singer and Tretter, 1976; Rauschecker and Singer, 1981; Löwel and Singer, 
1992). In agreement with the hypothesis, the covariance structure of rest-
ing activity reflects the anisotropic layout of these connections (Kenet et 
al., 2003; Fries et al., 2001b; Bosking et al., 1997; Löwel and Singer, 1992; 
Gilbert and Wiesel, 1989), is modified by learning (Lewis et al., 2009; Kun-
du et al., 2013) and reveals hallmarks of an internal model of the environ-
ment (Berkes et al., 2011).

Ample evidence is also available for the ability of cortical circuits to en-
gage in oscillatory activity in a wide range of frequencies and for stimulus 
dependent changes of correlations mediated by intracortical connections, 
both being hallmarks of recurrently coupled networks (for reviews see 
Singer, 1999; Buzsáki et al., 2013).

However, much less is known about how the ensuing oscillatory re-
sponses depend on the particular properties of natural stimuli, both in the 
spatial and temporal domain, how particular Gestalt principles of grouping 
translate into informative neuronal dynamics and how noise or ambiguity 
affect the efficiency of this encoding.

There are also indications that both sensory stimulation and top-down 
mechanisms related to attention induce changes in the dimensionality of 
states, because they can enhance synchronized oscillatory activity in dis-
tinct frequency bands (Gray et al., 1989; Lima et al., 2011; Churchland et 
al., 2010; Fries et al., 2001a). However, no direct analysis of dimensionality 
changes were performed in these studies. In Lima et al., 2011, the “attend-
ed” stimulus evoked gamma band oscillations of much higher amplitude 
than the “non-attended” stimulus. Thus, the expectancy of having to re-
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spond to a particular stimulus changed the correlation structure of the 
activity induced by this stimulus towards enhanced coherence. In other 
terms, anticipatory top down signals constrained the dynamics of an early 
visual area – most likely leading to a reduction of dimensionality.

Evidence is also available that cortical dynamics exhibit a fading memo-
ry for recent inputs. This is a hallmark of recurrent networks (Buonomano 
and Maass, 2009; Bertschinger and Natschläger, 2004; Lukoševičius and 
Jaeger, 2009) that greatly facilitates encoding and classification of sequenc-
es. As demonstrated in Nikolic et al. (2009) information about a briefly 
presented stimulus could persist for up to one second in the distributed 
responses of cortical neurons, could superimpose with information about 
subsequent stimuli and remain classifiable with high fidelity. We presented 
sequences of visual stimuli (letters and numbers) while recording from a 
large number of neurons in the visual cortex and trained a linear classifier 
on short segments (5-100 ms) of the high dimensional vector of responses 
obtained from a training set and then used the same classifier to identify 
the nature of the presented stimuli in a test set. We found that i) the infor-
mation about a particular stimulus persists in the activity of the network 
for up to a second after the end of the stimulus, ii) the information about 
sequentially presented stimuli superimposes so that two subsequent stimuli 
can be correctly classified some time after the end of the second stimulus 
and iii) the information about stimulus identity is distributed across neu-
rons and encoded both in the discharge rate of the neurons and in the 
precise timing of the spikes. 

Finally, we have preliminary evidence that repeated exposure to a set 
of images changes the response properties of populations of neurons in 
the primary visual cortex, such that stimulus classification improves over 
time: we observe changes in the dynamics of the network through the 
state-space that favor the segregation of responses into stimulus specific 
substates. Hence the network “learns” in an unsupervised way about the 
statistics of feature constellations in frequently presented stimuli and this 
leads to enhanced segregation and classifiability of substates in the high-di-
mensional state space (Lazar and Singer, in preparation).

Concluding remarks
Despite considerable effort there is still no unifying theory of cortical 

processing and therefore numerous experimentally identified phenomena 
lack a cohesive theoretical framework. This is particularly true for the dy-
namic phenomena reviewed here because they cannot easily be accommo-
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dated in the prevailing concepts that emphasize serial feedforward process-
ing and labelled line codes. Here we have proposed a concept that assigns 
specific functions to recurrent coupling and to features of the emerging 
dynamics. This concept is fully compatible with the robust evidence for 
labelled line codes and extends this notion by the proposal that precise 
temporal relations among the discharges of coupled neurons also serve 
as code for the definition of relational constructs both in signal process-
ing and learning. We proposed a computational strategy that capitalizes on 
the high-dimensional coding space offered by reciprocally coupled net-
works. In this conceptual framework, information is distributed and en-
coded both in the discharge rate of individual nodes (labelled lines) and 
to a substantial degree also in the precise temporal relations among the 
discharge sequences of distributed nodes. The core of the hypothesis is that 
the dynamic interactions within recurrently coupled oscillator networks 
i) endow responses with the temporal structure required for the recoding 
of semantic relations into temporal relations, ii) exhibit complex, high di-
mensional correlation structures that reflect the signatures of an internal 
model stored in the weight distributions of the coupling connections and 
iii) permit fast convergence towards stimulus specific substates that are easy 
to classify because they occupy well segregated loci in the high-dimen-
sional state space. The analysis of the correlation structure and consistency 
of these high-dimensional response vectors is still at the very beginning. 
However, methods are now available for massive parallel recording from 
large numbers of network nodes in behaving animals. It is to be expected, 
therefore, that many of the predictions formulated above will be amenable 
to experimental testing in the near future. 

Irrespective of the outcome of these tests, available evidence suggests that 
nature – with the evolution of the cerebral cortex – succeeded to realize an 
extremely powerful, scalable and versatile computational strategy, that prob-
ably differs in some crucial aspects from algorithms implemented presently 
in artificial devices – and is probably not yet fully understood. As the intrin-
sic organization of cortical modules is strikingly similar across the whole 
cortical mantle, this strategy must be of a very general nature and capable 
of serving a wide spectrum of seemingly different cognitive and executive 
functions. This versatility is the likely reason for the tremendous evolution-
ary success of this structure. Its expansion is the hallmark of the evolutionary 
changes that distinguish the human species from its nearest neighbours, the 
great apes, and the cognitive functions resulting from the addition of cortical 
modules ultimately enabled humans to initiate cultural evolution.
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Comments: The Ethics 
of Artificial Intelligence
Stephen Hawking

It is not clear whether intelligence has any long-term survival value. 
Bacteria multiply and flourish without it. However, intelligence is central 
to what it means to be human. It allows us to learn more about oursel-
ves and our environment, and as a species it gives us competitive edge. 
Everything our civilized action has achieved is a product of human intelli-
gence. I regard it a triumph that we, who are ourselves mere stardust, have 
come to such a detailed understanding of the universe in which we live.

The potential benefits of creating beneficial artificial intelligence are 
huge. Used as a toolkit, AI can augment our existing intelligence to open 
up advances in every area of science and society. However, it will also bring 
dangers. Governments around the world are already funding an AI arms 
race. And in the future, AI could develop a will of its own, a will that is in 
conflict with ours... 

In short, AI will be either the best or the worst thing ever to happen 
to humanity. We do not yet know which. That is why in 2014 I and a few 
others, called for more research to be done in this area. I feel it is important 
to have this discussion now, in order that the research and its applications 
benefit society as a whole. 
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Optimal Strategies for 
Decision-Making and Their Neural Basis
Alexandre Pouget

Understanding how animals and humans make decisions is one of the 
key questions in neuroscience, economics and artificial intelligence. De-
cisions come in all sort of flavors but, in neuroscience, most of the work 
so far has focused on two types known as perceptual decision-making and 
value-based decision-making. In the case of perceptual decision-making, 
subjects must decide on the state of a stimulus based on sensory evidence. 
For instance, subjects might have to determine whether a set of dots is 
moving rightward or leftward based on a short movie [1]. In value-based 
decision-making, subjects have to choose between items with subjective 
values, such as choosing between two types of desserts [2]. In this case, and 
contrary to perceptual decision-making, there is no objectively correct 
answer since the value of an item is necessarily specific to the taste and 
preference of each subject. 

The theory as well as the neural basis of binary perceptual deci-
sion-making are reasonably well understood [3]. A class of models known 
as drift diffusion model, or DDM for short, have been shown to predict 
remarkably well the percentage of correct responses as well as the reaction 
times as a function of the task difficulty. DDM are based on the assumption 
that subjects receive scalar samples at every time steps from their perceptual 
system, which serve as evidence for or against the two possible choices [4, 
5]. For instance, in the case of leftward versus rightward motion, positive 
samples can be assigned to leftward motion, in which case negative sam-
ples would count as evidence for rightward motion. To be more specific, 
the samples are assumed to be drawn from a Gaussian distribution whose 
mean is proportional to the strength of the visual motion and its sign is 
related to the direction (positive for leftward motion in our example). The 
DDM simply takes the sum over time of the samples and stops whenever 
the accumulated evidence reaches one of two symmetric bounds. If the 
positive bound is hit first, the model ‘chooses’ left, while it chooses right if 
the negative bound is hit first. Critically, this simple strategy, and variations 
thereof, has been shown to optimize the number of correct answers per 
unit of time. Moreover, the response of neurons in several cortical areas 
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suggests that they sum their momentary evidence, and stop integrating 
when their activity reaches a specific level, just as in a DDM. Therefore, it 
appears that, to a first approximation, neural circuits implement DDMs for 
binary perceptual decision-making.

Behavioral studies also suggest that humans and animals use a similar 
strategy for binary value-based decision-making [6]. In this case, it is as-
sumed that the brain generates two samples at each time step drawn from 
two Gaussian distributions with means equal to the subjective values of the 
two items being considered. Specialized circuits compute the difference 
between the two samples at each time step and then sum this difference 
over time until an upper or lower bound is hit, with each bound associated 
with one particular choice. This strategy is appealing from a neural point of 
view since it requires the same circuits as for perceptual decision-making. 
However, unlike in the case of perceptual decision-making, it is unclear 
whether this strategy is optimal, i.e., whether it maximizes the number of 
rewards (or value) per unit of time across multiple trials. In fact, there are 
reasons to believe that this is not an optimal strategy. 

Consider a choice between two items with nearly equal high values. 
This would be like choosing between your favorite ice cream and your 
favorite cake. In this case, the difference between the value samples at each 
time step will be very small on average, in which case the accumulation 
process will take a long time to hit either of the bounds. Therefore, this 
model predicts that, when confronted with two equally good choices, sub-
jects should take a particular long time to decide, even though at the end 
of the decision, they are guaranteed to end up with a good choice. This 
is strange: it would make a lot more sense in this case to decide quick-
ly rather than to procrastinate. A different class of models known as race 
models seems better suited to this type of situations. A race model uses two 
accumulators, one per choice, each summing the samples for one choice 
exclusively. The process stops whenever one of the accumulators reaches 
a preset bound. If both choices are highly valued, both accumulators will 
grow quickly and hit their bound in a short time. 

Curiously, however, it is well known that subjects do take a very long 
time to decide between two items they like, a result consistent with the 
DDM, not the race model. In fact, we have all experienced this problem. 
If a restaurant menu contains two items you really like, you know you will 
agonize over the options for a long time. Other behaviors in value-based 
decision-making are just as puzzling. For instance, subjects have a particular 
hard time deciding between two items they really like if a third low-val-
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ue choice is offered, even if the subjects never select this third choice. 
These strange interactions between options, and others results, have often 
been used to argue that humans rely on a suboptimal strategy for val-
ue-based decision-making. The problem with this conclusion is that, up 
until recently, the optimal strategy for value-based decision-making was 
unknown, making it difficult to determine whether a particular strategy 
is optimal or not. We have recently revisited this issue and used the theory 
of dynamic programming to derive the optimal strategy. In the case of 
binary decision-making, the answer was counterintuitive: DDM models 
do provide the optimal strategy in the sense that they optimize the reward 
rate [7]. Although it seems strange that the optimal decision policy involves 
waiting a long time when deciding between two good choices, this strate-
gy has the advantage of leading to very fast responses when the difference 
in value between the two options is large, i.e., when the choice is easy, 
which increases the reward rate. As a result, DDMs work better than race 
models when the difficulty of the choices varies across trials. 

For choices involving N options where N is greater than 3, the opti-
mal solution requires N coupled accumulators, where the coupling comes 
from the fact that the mean across all the accumulators must be subtracted 
from each accumulator. As a result, the choice between two high-value 
items can be influenced by a third low-value item, because this item will 
contribute to the common mean term. As a result, the optimal strategy 
exhibits the same behavior as humans: it becomes hard to choose between 
two high-value items in the presence of third items even if it is never cho-
sen. 

Our work also shows that the neural implementation of the optimal 
strategy requires a very specific operation known as normalization with 
corresponds to the subtraction of the mean of the momentary evidence. 
Normalization has been reported in neural circuits involved in value-based 
decision-making but its role had remained obscure. Our analysis suggests 
that it is in fact a key operation that allows neural circuits to make near 
optimal decisions. 

While it represents a significant step forward, this work only considers 
the simplest form of value-based decisions, such as choosing between two 
desserts. For much more complex cases, such as deciding a major in col-
lege, the decision involves very complex form of reasoning which cannot 
be captured by the simple DDM model we have explored here. Complex 
reasoning is believed to rely on probabilistic inference over rich data struc-
tures such as trees or graphs driven by a temporal stream of evidence. It re-
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mains to be seen how neural circuits could represent data structures of this 
type and implement efficient inference over such neural representations. 

It is quite likely that this research could greatly benefit from the recent 
work in artificial intelligence on neural networks with long term memory 
([8, 9]). Up until recently, learning algorithms were exclusively designed 
for networks with short-term memory but these algorithms have now 
been generalized to train networks composed of two sub-networks, one 
dedicated to long term-storage and one more specialized for online com-
putation. A similar dichotomy appears to exist, to a first approximation, in 
the mammalian brain where the hippocampus is specialized in long-term 
storage while the cortex is more specifically focused on online processing. 
One can imagine storing knowledge about a particular domain in the 
long-term memory of the system and using the other network to integrate 
over time the information extracted from long-term memory. The current 
architectures used in AI lack full biologically plausibility but they provide 
an extremely promising starting point. Such a project would illustrate once 
again the extraordinary potential of artificial intelligence as a source of 
inspiration for research in Neuroscience. 
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Motivations and Drives 
Are Computationally Messy1

Patricia Smith Churchland

Deep learning strategies have achieved successes that have surprised 
those who favor a traditional write-a-program approach to artificial in-
telligence. The dramatic success of AlphaGo in defeating Lee Sodol, one 
of the very best Go players in the world, in 4 games out of 5, was a very 
public vindication for those who took advantage of increased computer 
power and steadfastly improved the performance of Artificial Neural Nets 
(ANNs). 

Although insights relevant to neuroscience may emerge from how 
ANNs work, so far the accomplishments of deep learning are essentially 
confined to pattern recognition problems, and indeed, to pattern recog-
nition in one single domain per machine. Striking as these pattern recog-
nition feats are, any animal whose capacity was confined to one category 
of pattern recognition, even if it is brilliant pattern recognition for that 
category, would be an evolutionary casualty.

The success of ANNs notwithstanding, it must be acknowledged that 
the behavior is a far cry from what a rat or a human can do, as they live out 
their lives on the planet. But could we not just scale up pattern recognition 
so that it could be the equal of the accomplishments of a rat or a human? 
My judgment is that this is a lot harder than trumpeting the words “scale 
up pattern recognition” and confidently waving your hands.

All animals have the capacity to maintain homeostasis. Their inner mi-
lieu must stay within a restricted temperature range, the circuitry must 
organize the animal’s movements so that it has sufficient energy, water, and 
oxygen. Homeostasis is anything but a simple business, and as endotherms 
emerged, a much narrower temperature range had to be maintained on 
pain of death. Maintaining homeostasis often involves competing values 
and competing opportunities, as well as trade-offs and priorities. While en-
thusiastic ANN designers might bet serious money that simple extensions 
to learning algorithms could easily handle these jobs, I would bet that a 

1  Special thanks to Anne Churchland and Adrienne Fairhall for their ideas and 
observations. 
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wholly new wrinkle is needed. To mimic what evolution discovered over 
many hundreds of millions of years may be much more difficult than scal-
ing up pattern recognition in a really big ANN with a cobbled-up trick 
or two. 

All vertebrate species are able to detect threats, and to behave appropri-
ately in response to motivations to survive, thrive, and reproduce. In this 
domain, as well as maintaining homeostatic functions, there are typically 
competing values and competing opportunities: should I mate or hide 
from a predator, should I eat or mate, should I fight or flee or hide, should 
I back down in this fight or soldier on, should I find something to drink 
or sleep, and so forth. The underlying neural circuitry for essentially all of 
these decisions is understood if at all, then only in the barest outline. And 
they do involve some sense of “self ”, which is a sort of brain-construction, 
not a feat of pattern recognition. Biological evolution favors those whose 
values and decision allow them to survive long enough to pass on their 
genes.2 But the dynamics of the neural business is poorly understood. 

Not everything in the world is of equal interest across species. Dung 
beetles are highly motivated to seek dung; squirrels are not. On the other 
hand, squirrels are keen to find nuts and to distinguish between fresh and 
stale nuts, but dung beetles care not. Dogs are typically motivated to sniff 
the behinds of other dogs, humans are not. And so forth. Goals and plans 
to achieve them are internal to the animal. Often the stimuli are essentially 
neutral, but for the animal’s goal.3 So there are internal settings, some ac-
quired but some not, that manipulate such pattern recognition functions 
as these animals deploy. 

Mammals, at least, appear to build causal models of the world. Since 
causality is a stronger relation that correlation, the standard real-brain tactic 
for upgrading to causality involves intervention and manipulation. This 
may be easier for an animal that can move than a stationary, if deep, learn-
ing machine. The capacity for movement, especially if you have limbs, is 
anything but simple, that we do know.

So far as I can tell, no one has a genuinely workable plan concerning 
how to capture motivation and drives and motor control into a plausible 

2  Unless, for example, they are honeybees, where their decisions are geared to pass-
ing on the genes of the queen bee. 

3  Vikram Gadagkar et al., (Dec 8 2016), Science. Dopamine neurons encode perfor-
mance error in singing birds.
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pattern recognition regime.4 The problem is not straightforward because 
motivations come in different packages – hunger is different from thirst, 
which is different from lust or fear or curiosity or joy. Temperament comes 
in different “colors on a spectrum” – introvert or less so, risk averse or less 
so, energetic or less so, and so forth. These factors change with age, with 
time of day, with sleep, with mood changes, and with diseases. These func-
tions might be understood as the drivers of pattern recognition jobs in 
real animals, not as pattern recognition themselves.5 The hypothalamus and 
brainstem, which are crucial in the nervous system of real animals for the 
managements of these functions, are not yet well understood in neurosci-
ence, to put it mildly. The circuitry is ancient, and extremely complicated. 
It does not look like it is just doing pattern recognition, whatever that 
might mean in this context. 

Why not just assign different numbers to different motivational forms, 
and add a plus or a minus to mark strength? Ditto for temperament, ditto 
for levels of arousal? One problem is that the “just assign numbers” idea 
blurs the differences between kinds of motivational states, and the rele-
vance of such differences to decision-making.6 Fear and lust both involve 
arousal, but they are different and have different trajectories in brain space. 
In any case, the idea needs to be fleshed out to show how such a system 
makes decisions to behave that are comparably suitable to those of a fruit 
fly or a rat. 

There is a precise pattern of causality between kinds of functions that 
so far is not captured by the “pattern recognition” paradigm. Until we 
understand much more about the nervous systems of animals, we cannot 
specify with any precision the nature of the causal relationships managed 
by the hypothalamus, brainstem and basal ganglia, or how adequately to 
model what is going on. 

What really are depression or exuberance or patience or tenacity or 
resilience? Not just pattern recognition, almost certainly. How do these 
phenomena interact with motivation, drive and desires? What is the role 

4  Though I should mention that Yann LeCun has some ideas about internal motiva-
tion, on a “happy or not happy” dimension. This could be a fruitful start.

5  Sejnowski, T.J. Poizner, H. Lynch, G. Gepshtein, S. Greenspan, R. Prospective Op-
timization, Proceedings of the IEEE, 102, 799-811, 2014.

6  Raposo, D., Kaufman M.T., and Churchland A.K. (2014) Nature Neuroscience: 
17(12): 1784-92. A category free neural population supports evolving demands during 
decision-making.
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of neuromodulators in these and other phenomena such as curiosity or 
wanderlust or sociality or aggression? Neuroscientists are indeed exploring 
these phenomena, one and all, but their neurobiological bases are not easy 
to plumb. That they are simply, at bottom, forms of pattern recognition 
seems unlikely at this point. 

Neuromodulation more generally seems to affect what is learned, when 
something is learned, and how it is learned, yet so far, ANN modelers give 
it no role whatsoever, as though neuromodulation is a “mere biological 
by-product” – existing in us because we are the products of guess-and-by-
golly evolution, but definitely not the crux of bit of engineering magic. 

Perhaps they are right. But consider. Because so much is unknown 
about the relevant neurobiology, perhaps what are waved off as activities 
incidental to intelligence may turn out to be essential features that “scaf-
fold” real intelligence. The analogy here is with early brain researchers who 
thought that all the cognitive action was in the ventricles, not in the brain 
itself.7 The thing is, apart from biological intelligence, we have no under-
standing of what to count as real intelligence – we have no other criteria. 
For example, a person who is a great mathematician may be a dud in prac-
tical matters of health, finance, sex, and food. Mathematicians may say she 
is intelligent, but financiers or fighter pilots will not.

Go ahead and market something as “intelligent”, but if it is brittle, lacks 
flexibility and “common sense”8 and has nothing approximating motiva-
tion or drive or emotions or moods, it may be difficult to persuade the rest 
of us that it is intelligent in the way that biological entities can be. Rede-
fine “intelligence” you may, but the redefinition per se will not make the 
machine intelligent in any generally recognizable sense. 

At least some of the dystopian predictions concerning the eventual 
threat to humans of intelligent machines depend on the tendentious as-
sumption that engineers have now cracked the problem of intelligence 
in a machine. However dramatic such predictions may be, they are not 
tethered by a biological understanding of what makes for intelligence, and 
they certainly are not grounded in a biological understanding of the na-
ture of motivation and goals. Although it is always ticklish to downplay 
dystopian predictions lest one seem indifferent, it is nevertheless worth 

7  See for example, Hieronymous Brunschwig (1497, second edition 1525) The No-
ble Experyence of the Vertuous Handy Werke of Surgerie. Descartes seems to have thought 
along similar lines. 

8  See also Yann LeCun on this point. 
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balancing dystopian predictions by noting that our realistic time horizon is 
only about five to ten years out. Machines that care and desire control are 
unlikely within that time horizon.9

9  Thanks to Terry Sejnowski for comments on an earlier draft.
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Children and Robots
Antonio M. Battro and Magela Fuzatti*

One way to explore the relation between artificial intelligence and hu-
man consciousness is to look at the way children build robots and program 
them. It seems that when children construct a robot as a new toy or a new 
instrument not only are they putting together “atoms and bits” using phys-
ics and information technology, but they also attribute to their creation 
some “mental” properties. We will try to briefly analyze this phenomenon 
and the acquisition of the new robotics skills in our lives.

Animism, artificialism and roboticism
Jean Piaget described the combination of “animism” and “artificialism” 

in the cognitive development of young children some eighty years ago in 
his celebrated book La répresentation du monde chez l’enfant, 1938 (The child’s 
conception of the world). For Piaget animism “is the tendency that the child 
has to ascribe life and consciousness to inanimate beings” and artificialism 
is the idea that “nature is directed by people or at least gravitates around 
people”.1

Today, millions of children around the world have access to robots, and 
many acquire the skills to construct and program them since primary edu-
cation. We can coin the term roboticism as the belief that the robot is an autono-
mous object with liberty to make decisions. As such, roboticism could be under-

* Director, Laboratorios Digitales, Plan Ceibal, Uruguay.
1   Jean Piaget (Battro, 1973): Artificialism, 4 developmental periods: I) “nature is di-

rected by people or at least gravitates around people”, II) mythological artificialism 
“appears from the moment when the child asks questions about the origin of things or 
answers questions which we put to him”, III) technical artificialism, “the child contin-
ues to attribute to man the general arrangement of things, but limiting his action to the 
operations which can be technically achieved”, IV) immanent artificialism, “nature is 
the heir of man and manufacturer like a workman or artist … it considers things as the 
product of human manufacturing, much more than it attributes to the manufacturing 
activities”. 

Animism “is the tendency that the child has to ascribe life and consciousness to 
inanimate beings”. “The child ascribes to things moral attributes rather than psycho-
logical”: I) diffuse animism is the general tendency of children to confuse the living and 
the inert”, II) systematic animism is the group of explicit beliefs which the child has. 
The clearest one of them is that children believe that the heavenly bodies follow them”.
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stood as a new synthesis of animism and artificialism. When children think 
that a robot is an “animated artifact” they are in fact putting together both 
beliefs. On the one hand, they have constructed an artifact that is working as 
they have predicted; on the other, they have given instructions that are fol-
lowed automatically by the robot, without human control. This mixture of 
dependency (rules) and autonomy (freedom) is quite unique. At the time 
of Piaget, in the pre-digital era, it was impossible even to imagine such a 
combination in the hands of children. Children have now constructed an 
object that becomes in a certain sense “independent”: a robot that works 
without human help. Of course, the child has prescribed the kind of work 
the robot performs by means of a set of rules in a well-defined environ-
ment; the robot’s apparent freedom is limited by this particular environ-
ment and rules. Our thesis is that early hands-on experience in the con-
struction and programming of robots may lead children to discover the real 
power and limits of artificial intelligence. However, we would need more 
field research and extended cognitive studies to disentangle the new com-
posite of beliefs that may continue into adulthood in relation to robots.

A personal history: playing with turtles
My experience (AMB) with children and robots started in the nine-

teen-sixties when Seymour Papert promoted the revolutionary project of 
deploying computers in the classrooms and began to explore the way chil-
dren learn to program and construct/control a robot. I met Papert in the 
early 60s at the Center of Genetic Epistemology directed by Jean Piaget 
in Geneva. At that time he was developing his cognitive theory of con-
structionism, as a complement to Piaget’s theory of constructivism. In Piaget’s 
words, constructivism is the “formal obligation of constantly transcending 
the systems already constructed to assure non-contradiction” (Piaget & 
Beth, 1961). In contrast, Papert’s constructionism was more focused on the 
dynamics of developmental change than on the logical stability of mental 
structures or stages. Both authors were clearly opposed to instructionism 
in education. Papert left Geneva for MIT, where he became director of the 
AI Lab (1967) with Marvin Minsky. I would now like to pay a most sincere 
tribute to my dear friends Seymour and Marvin who passed away this year, 
we owe them so much. 

With Wally Feurzeig, Papert created LOGO, a programming language 
inspired by LISP, and introduced it in schools in the 80s. He became pro-
fessor at the MIT Media Lab, founded by Nicholas Negroponte, but, un-
fortunately, our Master Piaget died in 1980 and wasn’t able to see his for-
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midable breakthrough in education. Together with Horacio C. Reggini, 
we soon followed his example in Argentina, where we created “Asociación 
Amigos de Logo” to promote the practice of Logo in elementary and spe-
cial education schools. From the very beginning Papert fully supported my 
work with disabled children with the help of computers. His seminal book, 
Mindstorms (1980) was followed by Reggini’s Alas para la mente. Logo: un 
lenguaje de computadoras y un estilo de pensar (1982), a book that had a great 
impact in our Latin American region. Logo was used in many different 
school activities; one of the most popular was to draw on the computer 
screen using elementary geometric procedures to move a pointer, a small 
triangle that was called a “turtle”. 

The name “turtle” has an interesting history in cybernetics and was 
inspired by the (analog) robot created by neurophysiologist William Grey 
Walter (1910-1977) in the 1940s (http://www.rutherfordjournal.org/arti-
cle020101.html). Grey Walter’s “tortoise” had three wheels, light and touch 
sensors, steering and propulsion motors and two vacuum tube analog pro-
cessors that allowed the robot to explore and avoid obstacles, and to simu-
late positive and negative phototropism. It was named Machina Speculatrix 
(http://www.extremenxt.com/walter.htm) and was used to simulate some 
brain mechanisms and simple behaviors. Gray Walter elaborated these ideas 
in an influential book The living brain (Norton, New York, 1963), that be-
came a source of inspiration for many of us.

Following this trend the first robot programmed by children in the 
1980s was a Logo “turtle”. The turtle was a very simple and robust ro-
botic vehicle, produced by Terrapin Co. (terrapins are small semi-aquatic 
turtles), equipped with two wheels, electric motors, a transparent shell, a 
ring as a contact sensor and the whole robot connected to a computer 
(https://www.terrapinlogo.com/). Children were taught to write modular 
and recursive Logo programs with a few simple commands such as forward 
(number), back (number), turn (degrees, left, right), pen down (to write 
the trajectory on the floor), pen up (stop drawing), etc. My early work 
with children and robots began with these charming Logo turtles in a 
variety of settings, working initially with disabled kids in a hospital and in 
a few elementary schools. Incidentally at that time very few physicians or 
clinical psychologists were using computers. One landmark event, perhaps 
the first of its kind in the world, was the communication by computer we 
managed to establish between deaf children in Argentina and the United 
States with Percival J. Denham in 1988. This ended the communication 
gap established by Graham Bell when he invented the telephone and ex-
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cluded ipso facto all deaf people from the system, a cruel paradox because 
he was a dedicated teacher of the deaf (Battro & Denham, 1989). Another 
unforgettable experience in the early 1980s was to watch our turtle being 
moved in Buenos Aires by Logo commands from Boston via modem and 
telephones lines, well before the internet. Today remote controlled robots 
are very common, even in schools. 

It is interesting that the robotic work with children started with turtles 
and not with androids/humanoid robots… Roboticism was not “about 
humans” in the early days of robotics. Today things are changing rapidly 
and androids capture the imagination of both children and adults. There 
are so many androids on the market today at child’s reach. Nevertheless, 
there is an essential difference between buying a robot and constructing one. 
Both modalities can be used in the classroom or at home, but only con-
structing gives transparency to the inner organization of the machine, which 
is hidden in the manufactured robot.

Current research and implementations
A source of inspiration for all of us is the work of the Laboratory of 

Lifelong Kindergarten at the MIT Media Lab, directed by Mitchel Res-
nick, creator of Scratch, a very useful programming language to use in 
elementary robotics with children (http://scratch.mit.edu). MIT is one 
of the leading places that launched the LegoLogo equipment for children, 
where Lego blocks are provided with gears, motors and sensors connected 
to a computer (https://llk.media.mit.edu/press/).

A recent development by Mariana Umashi Bers, also a disciple of Pap-
ert, now at Tufts, is the ScratchJr software (available as a free download on 
iPad and Android tablets), which is making it possible to program robots 
without even knowing how to read or write. She calls it KinderLab ro-
botics. The job is done using solid objects with various symbols for SPIN, 
SING, STOP, and so forth, that can be put together as a “solid sentence” 
that commands a small wireless robot called Kibo. It is all about “learning 
to code” through actions.2 The same idea is at the core of the spirit of 
La main à la pâte foundation, which promotes inquiry-based learning, in-
cluding learning by “doing robotics” (www.fondation-lamap.org, Calmet, 
Hitzig & Wilgenbus, 2016).

2 https://www.youtube.com/watch?v=jOQ-9S3lOnM&list=PLXzFU_7W4n0t-
5suyfWPX6R-zUpd1MQ876
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Perhaps one of the most remarkable recent variations on robotic turtles 
is the “tortuga Butiá” made in 2012. It is essentially a “moving laptop”, a 
laptop mounted on wheels, a clever invention of the School of Engineer-
ing in Uruguay that is easy to build and uses free software (Turtle Art) 
and free hardware.3 Therefore, every device of the laptop, videos, photos, 
sounds, and a multiplicity of sensors, is already incorporated in the (laptop) 
robot and may be used freely without extra costs. 

In Uruguay every student and teacher in public primary, secondary and 
technical schools owns his or her own laptop, the famous green XO pro-
duced by OLPC, One laptop per child, the program launched by Negropon-
te in 2005. Many children and adolescents are now capable of transforming 
their own XO into a robot that can compete with other robots and play 
all sort of games. Such a rapid transformation is bridging the technological 
gap between diverse socioeconomic populations, in particular in rural and 
urban deprived environments (Cobo and Mateu, 2016). Some 700,000 
students today participate in the Plan Ceibal (www.ceibal.org) and there 

3  https://www.youtube.com/watch?v=6leWvweMEMc; https://www.youtube.com/
watch?v=vP6DAdGnmaA; https://www.youtube.com/watch?v=fXRRd5M_Zzs

Figure 1. Robotics, Plan Ceibal, Uruguay, Nov. 2016.
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are over 1200 digital labs in public schools, well equipped with Lego/Logo 
(some 5000 kits) to construct robots, using Scratch to code. Among the 
very recent improvements we should mention the 3D printer that children 
are starting to use in order to produce solid pieces to build robots of the 
most diverse kinds. In November 2016 a national robotics competition 
(180 teams) demonstrated the students’ creativity with these new tools.4

We could say that the Nobel Prize in Chemistry 2016 awarded jointly 
to Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa “for the 
design and synthesis of molecular machines” also rewarded a nanoscale 
kind of robotic turtle to play with, this time at the frontier of molecular 
science. And when we play we learn, at all ages and in all fields.

In conclusion, the construction of a robot is certainly the main path to under-
stand how the machine works, and creates enormous potential for invention, 
creativity and design starting with the early school years. It is a new cognitive 
skill that will have profound social, economical and moral consequences. 
This robotic experience, which today is available to millions of children, 
opens a new field of research for the neurocognitive and social sciences. 
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Ghost In the Machine
Olaf Blanke

Neuroscience research has investigated some of the major mechanisms 
of conscious processing (i.e. Koch, 2004; Dehaene and Changeux, 2011). 
Influential data regarding the neural correlates of consciousness came from 
observations in neurological patients (i.e. Pöppel et al., 1973; Weiskrantz 
et al., 1974; Bisiach et al., 1979), extended by psychophysical research and 
brain imaging (i.e. Dehaene and Changeux, 2011; Dehaene, this issue). 
Although these studies have led to a better understanding of perceptu-
al consciousness, they have mostly targeted visual consciousness, whereas 
conscious and unconscious perception for other senses has been underex-
plored, despite its importance for consciousness given its multisensory and 
integrated nature (Faivre et al., 2015, 2017). 

Recently, consciousness research has targeted the observer, or subject 
of conscious experience, that was not accounted for in these models of 
visual-perceptual consciousness, although the self as the subject of con-
scious experience is a fundamental property of perceptual consciousness 
and some have even argued that a subject pervades all consciousness expe-
rience. Thus, conscious perception is not only a multisensory experience 
of external objects, but also includes the experience of a unitary subject. In 
what follows I summarize what is known about the brain mechanisms that 
are associated with the ghost in the machine, the feeling that the objects 
of conscious perception seem to be experienced by somebody, by a self. 
Many notions of self have been defined and studied in the neurosciences. 
Although many different classifications have been proposed for the self, I 
will here highlight only two kinds of self (cognitive self, conscious self). Both 
are of relevance for engineering and AI, but only one is fundamentally 
relevant for consciousness. 

The multidimensional cognitive self includes self-related cognitions rang-
ing from memory, to language, to imagery, theory of mind, and many other 
cognitive functions and overlaps with Dan Dennett’s narrative self and 
Ulric Neisser’s extended self (i.e. Neisser, 1988; Dennett, 1991; Gallagher, 
2000). For example, the capacity to attribute mental states to self and oth-
ers in order to predict and explain behavior (theory of mind) is often listed 
as part of the cognitive self. Such research has targeted brain mechanisms 
that may distinguish theory of mind for self and other, for example the 
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different sensory inputs and cognitive systems processing signals relevant 
for attributing mental states to self and others. Contrary to our intuition 
that we know our own mind better than those of others there is, however, 
much evidence that brain mechanisms are actually quite similar and shared 
when attributing mental states to oneself or to other people (i.e. Gopnik 
and Meltzhoff, 1994). Another self-relevant cognitive function is memory. 
Already John Locke proposed that memory processes are a crucial building 
block for the self. Memory may ascertain continuity of the self across time 
(and space) and recent studies have defined the self-relevant brain mech-
anisms of mental time travel (i.e. Arzy et al., 2008; Schacter et al., 2007, 
2012) or of autobiographical memory (Levine et al., 1998). Comparable 
to the systems dedicated to verbal or visuo-spatial memories, the remem-
bered self provides humans with the capacity to store and recall past own 
life events, to imagine life events from one’s past, and to imagine and pre-
dict future life events (Arzy et al., 2008; Schacter et al., 2007, 2012). The-
ory of mind and memory related aspects of the self are highly conscious 
self-representations and can be mentally accessed as any other cognitive 
operation. Future machines possessing capacities related to the cognitive self 
may thus be considered more likely as conscious as compared to machines 
not having such cognitive functions implemented. Advancing neurosci-
entific understanding of the cognitive self and implementing it in machines 
will probably make these machines more powerful. However, they are not 
likely to be conscious machines, because despite the importance of these 
systems for cognition and despite the mental access they may provide to 
such cognitive self-representations, they are distinct from a fundamental 
central processing system mediating the phenomenal self: the conscious self. 

What kind of system should be implemented in a machine so that it 
is more likely to be phenomenological consciousness? Recent evidence, 
ranging from clinical to experimental data, suggests that the processing 
of specific bodily signals is what is needed to have the unitary experience 
of being the subject of conscious experience. This conscious self is based 
on the processing of multisensory bodily (and motor) signals. The con-
scious self is fundamentally based on the processing of trunk-centered mul-
tisensory signals, representing the person’s body as a global and unitary 
entity (Blanke, 2012) and characterized by congruent self-identification, 
self-location, and first-person perspective. Experimental studies in healthy 
subjects used different visuo-tactile and visuo-vestibular stimulations for 
the induction of global changes in the conscious self, such as ‘full-body’, 
‘out-of-body’, or ‘body-swap’ illusions (Ehrsson, 2007) (Lenggenhager et 
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al., 2007) (Petkova and Ehrsson, 2008). Typically in these paradigms, tactile 
stimulations are repeatedly applied for several minutes to the back or chest 
of a participant who is being filmed and so simultaneously views (on a 
virtual reality headset) the stroking of a human body or avatar in real-time. 
When exposed to such stimulations, changes in the conscious self occur and 
participants self-identify with the seen virtual body and have changes in 
self-location towards the position of the virtual body (and thus not or less 
with their physical body). Additional visuo-vestibular conflicts may also 
lead to changes in the experienced direction of the subjective first-person 
perspective (i.e. Ionta et al., 2011; Pfeiffer et al., 2016). Similar effects on 
the conscious self have also been observed when integration of interoceptive 
bodily signals is tested (Aspell et al., 2013), linking the present concept of 
the conscious self to interoception-based self models (i.e. Craig, 2002; Park 
and Tallon-Baudry, 2014). 

Several variants of such multisensory bodily illusions exist and were 
conceived to mimic alterations of the conscious self that have been reported 
by neurological patients. Two such clinical conditions that are both based 
on abnormal multisensory integration of trunk-centered signals are most 
relevant and are out-of-body experiences and heautoscopy. Out-of-body 
experiences are characterized by a first-person perspective that is not non 
body-centered (i.e. the conscious self is experienced as being outside one’s 
bodily borders at an elevated position; Blanke et al., 2004; De Ridder et 
al., 2007). Heautoscopy is characterized by conscious bilocation and re-
duplication of the conscious self (i.e. the experience of two simultaneous-
ly conscious selves that are experienced at two distinct spatial locations; 
Heydrich and Blanke, 2014). Clearly, visual illusions (i.e. Ponzo or Ebb-
inghaus-Titchener illusion) are important tools to refine models of visu-
al perception and consciousness (Eagleman, 2001). Likely, the highlight-
ed multisensory bodily illusions will advance models of the conscious self. 
Computational implementations of the basic laws or constraints of the 
conscious self (i.e. proprioception, body-related visual information, perip-
ersonal space, and embodiment; Blanke et al., 2015) may thus be systems 
with access to body-centered multisensory self-representations and may 
hence enable forms of phenomenal self-consciousness: a ghost in the ma-
chine with a tendency towards mind-body dualism. 

The neuroscientific notions of cognitive self and conscious self relate dif-
ferently to an old dichotomy, pursued since the dawn of philosophy, be-
tween the easy and the hard problem of consciousness (Chalmers, 1996) or 
between access and phenomenal consciousness (Block, 1995). It will be a 
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fascinating neuroscience question to pursue whether the conscious self may 
allow us to make advances on phenomenal consciousness and the hard 
problem. Does the conscious self pervade all conscious experience (visual, 
auditory, cognitive, emotional) and underlies the integrated and unitary 
conscious experience of being a conscious self or subject as well as con-
scious experience of being a subject with a certain qualitative conscious 
experience (say the conscious experience of the blue sky). In other words, 
do the abovementioned brain mechanisms of the conscious self that are based 
on trunk-centered global bodily signals also play a role in visual and au-
ditory consciousness? In my opinion too much speculation rather than 
experimentation and modeling has prevailed in the past on this topic. With 
many of the mechanisms of perceptual consciousness as well as those of the 
conscious self well established such studies seem possible. Some data suggest 
that changes in visual consciousness are tightly coupled with changes in 
bodily self-relevant signals (Park et al., 2014; Salomon et al., 2016; Faivre 
et al., 2016). Whether such phenomenal aspects of visual or auditory con-
sciousness are mediated via a higher-order cognitive self representation or 
the first-order conscious self representation should open ground for fascinat-
ing research, including computational approaches. Such work in humans 
will require further experimental improvements as well as advances in vir-
tual reality, augmented reality, and robotics/haptics. Such technology needs 
to be tailored to the needs of cognitive neuroscience and brain imaging, 
advancing towards a more systematic and fine-grained control of bodily 
states in humans (i.e. Rognini and Blanke, 2016). Whether machines one 
day will report out-of-body experiences and heautoscopy or be disposed 
to psychosis (hallucinations and delusions that have been linked to altered 
processing of the conscious self) remains to be seen, but may be likely. 
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What Is Consciousness, 
and Could Machines Have It?
Stanislas Dehaene

Although consciousness is frequently considered as the pinnacle of the 
brain, and something that is impossible to confer to machines, I would 
like to argue otherwise. In this report, I argue that, in fact, much is already 
known about how brains generate consciousness, and how those findings 
could be used in artificial intelligence. In the past twenty years, cognitive 
neuroscience has made great advances in understanding the “signatures of 
consciousness” – brain activity markers that occur only when the subject is 
aware of a certain content. Those findings support a theory of conscious-
ness as a sharing device, a “global neuronal workspace” that allows us to 
share our knowledge, internally, between all of the specialized “processors” 
in our brain, and externally, with other people. On this basis, I make several 
tentative suggestions as to which functionalities should be added to pres-
ent-day machines before they might be considered conscious.

The contemporary strategy to study consciousness
In the past 20 years, the problem of consciousness has ceased to appear 

insurmountable. Neuroscience has started to identify the objective brain 
mechanisms underlying subjective processes – what I call the “signatures” of 
conscious processing. Those discoveries have been reviewed in detail else-
where (Dehaene & Changeux, 2011; Dehaene, 2014). Briefly, the first ad-
vance came with the advent of explicit theories of computation (Hilbert, 
Gödel, Turing, Von Neumann) and information representation (Shannon). 
Following those breakthroughs, consciousness could then be seen as a com-
putational property associated with a certain level of information processing. 

At present, three computational levels may be distinguished. At the low-
est level, which we may call level 0, unconscious algorithms process sym-
bols blindly and, obviously, without any awareness. For instance, our visual 
system blindly and unconsciously processes the following image (due to 
Adelson).

It lets us see a strictly normal checkerboard, although this is illusory – as 
you may check by masking the figure, the two knights and their squares 
seem to be black and white, but they are actually exactly the same shade of 
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grey. What is happening? Our visual system detects the presence of a dark 
zone in the image, which it interprets as a shadow, and it subtracts it from 
the image to let us see the “true” shade of grey of the pieces, thus making 
one knight look brighter than the other. Arguably, any machine whose aim 
would be to extract the genuine appearance of objects while getting rid 
of shadows and other defects of the image would have to go through the 
same inference process. In this sense, many of the brain’s unconscious com-
putations are rational computations. Paradoxically, any machine that strives 
towards objectivity would be submitted to similar human-like illusions.

Above the unconscious processing level, two higher levels of informa-
tion processing may be defined, corresponding to what others have termed 
primary and secondary consciousness (Edelman, 1989). 
-	 Level 1 is conscious access. At any given moment, although our brain 

is bombarded with stimuli and has a vast repertoire of possible sensory 
or memory states, only a single piece of information, selected for its 
relevance, is consciously accessed, amplified, and becomes the focus of 
additional processing. This selective attribution of higher-level comput-
ing resources is what we experience as “conscious access”. 

By Mig after Edward H. Adelson.
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-	 Level 2 is conscious self-representation. At this level, the cognitive sys-
tem entertains one or several representations of its own knowledge, for 
instance it may know what it is currently focusing on, that it made an 
error, etc. Thus, the system not only commits its resources to a specific 
piece of information (level 1), but also “knows that it knows” (level 2). 
The assumption is that this self-knowledge is represented in the same 
format as the knowledge of other people (also known as a “theory of 
mind”), thus allowing this information to be shared with others and to 
be used in social decision making (Bahrami et al., 2010; Frith, 2007).

Baars (1989) was one of the first cognitive scientists to realize that, given 
those simple definitions, it is quite possible to study consciousness exper-
imentally. The experimental strategy proceeds in several steps (Dehaene, 
2014):

1. Identify a minimal experimental paradigm (e.g. a visual illusion) that 
allows to contrast visible and invisible stimuli. My laboratory has used 
masking, whereby a flashed image can be made either subliminal or con-
scious (Kouider & Dehaene, 2007). Others have used binocular rivalry, 
whereby the competition between two images is used to render one of 
them conscious while the other is not (Logothetis, Leopold, & Sheinberg, 
1996). Many other minimal contrasts are available, for instance sleep versus 
wakefulness; wakefulness versus anesthesia; vegetative-state versus mini-
mally conscious patients, etc. (Baars, 1989).

2. Carefully quantify the subject’s introspection, i.e. what he or she 
“knows that it knows”. Introspection defines the very phenomenon that 
we want to study (conscious subjective perception) and must therefore be 
recorded alongside other objective measures of behavior and brain activity. 
The ideal situation consists in presenting a fixed stimulus closed to the 
threshold for awareness, and to sort the trials according to subjective re-
ports, such that the very same stimulus is sometimes perceived consciously 
and sometimes remains unconscious.

3. As a consequence, focus on a particular and restricted sense of con-
sciousness: the capacity to report a piece of information, to oneself or to 
others. Scientists have learned that this sense of consciousness, called re-
portability, is well-defined and differs from other concepts such as attention, 
vigilance, or self-consciousness.

4. Apply the panoply of modern neuro-imaging and neuroscience tools 
to compare the behaviors and brain activity patterns evoked by reportable 
and unreportable stimuli, thus uncovering the signatures of consciousness.
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Current signatures of consciousness in the human brain
Experiments that have implemented this strategy have discovered that, 

although subliminal stimuli can induce considerable activity in many if not 
all circuits of the human brain, conscious perception is associated with a 
set of specific signatures:
-	 Amplification and access to prefrontal cortex. Compared to a subliminal im-

age, a conscious image is amplified and gains access to higher levels of 
representation, particularly in prefrontal and parietal cortices.

-	 Late global ignition and meta-stability. Tracking the propagation of con-
scious and unconscious images shows that unconscious activity can be 
strong in early visual cortex, yet die out in a few hundreds of millisec-
onds within higher cortical areas. A conscious image, on the contrary, 
is amplified in a non-linear manner, an event called “global ignition”. 
By about 300 milliseconds, brain activity becomes more stable when 
the stimulus is conscious than when it is not (Schurger, Sarigiannidis, 
Naccache, Sitt, & Dehaene, 2015).

-	 Brain-scale diffusion of information. Conscious ignition is accompanied by 
increased in bidirectional exchanges of information in the human brain. 
During a conscious episode, the cortex “talks to itself ” at greater dis-
tances, and this is manifested by correlations of brain signals, particularly 
in the beta band (13-30 Hz) and theta band (3-8 Hz).

-	 Global spontaneous activity. Even in the absence of stimuli, the brain 
spontaneously generates its own patterns of distributed activity, which 
are constantly changing (Barttfeld et al., 2015). This resting state activity 
can partially predict the content of consciousness, for instance whether 
the subject currently experiences mental images or “mind wandering”.

-	 Late all-or-none firing of “concept cells”. Single-cell correlates of conscious 
ignition have been identified in human and non-human primates. Neu-
rons in prefrontal and anterior temporal cortex fire to a specific concept 
(e.g. the Empire State building) and do so only when the corresponding 
word or image is presented consciously. Their late activity acts as a sig-
nature of conscious perception (Quiroga, Mukamel, Isham, Malach, & 
Fried, 2008). 

Those findings are compatible with the Global Neuronal Workspace 
(GNW) hypothesis, a simple theory of consciousness (Baars, 1989; De-
haene & Changeux, 2011; Dehaene, 2014). Briefly, the hypothesis is that, 
while specialized subsystems of the brain (“modules”) process informa-
tion unconsciously, what we subjectively experience as consciousness is the 
global availability of information, which is made possible by a non-mod-
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ular “global workspace”. Consciousness is a computational device that 
evolved to break the modular organization of the brain. During conscious 
perception, a distributed parieto-frontal circuit, forming the global neuro-
nal workspace, ignites to selectively amplify a relevant piece of informa-
tion. Thanks to its long-distance connectivity, supported by giant neurons 
with long axons in layers 2-3, it stabilizes a selected piece of information 
and broadcasts it in a brain-wide manner to all other modules. The global 
workspace thus maintains information in an active state for as long as it is 
needed (meta-stability).

The GNW hypothesis addresses the classical question of the function 
of consciousness. Is consciousness a mere epiphenomenon, i.e. a useless 
side-effect of brain activity, similar to the whistle of the train? Theory and 
experiments suggest otherwise: consciousness appears to be required for 
specific operations. Thanks to the global workspace, we can reflect upon 
the information: subliminal information is evanescent, but conscious infor-
mation is stabilized and available for long-term thinking. Consciousness is 
also helpful in order to discretize the incoming flux of information and re-
duce it to a few samples that can be reported or stored: while unconscious 
processes compute with an entire probability distribution, consciousness 
samples from it. Consciousness is also involved in routing information to 
other processing stages, thus allowing us to perform arbitrary chains of op-
erations (for instance, computing 23x47; Sackur & Dehaene, 2009). Finally, 
consciousness plays a key role in monitoring our behavior and diagnosing 
our errors. We have found that a key component of the brain’s error mon-
itoring system, the “error negativity” that arises whenever we press the 
wrong button in a simple response-time task, only occurs on trials where 
subjects report seeing the stimulus (Charles, Van Opstal, Marti, & Dehaene, 
2013). Only visible stimuli allow us to detect the occasional discrepancy 
between what we intended and what we did.

What machines are missing
In summary, cognitive neuroscientists are beginning to understand that 

the computations that we experience as “conscious processing” are useful 
aspects of brain function that are therefore likely to be equally useful to 
artificial-intelligence devices. Here, I list four computational features that 
conscious brains possess and that machines currently miss. My suggestion 
is that if those functions were implemented, the resulting machine would 
be likely to be considered conscious, or at least much closer to conscious 
than most machines currently are.
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1.	 A workspace for global information sharing. In current computers and cell-
phones, computations are performed by special-purpose programs 
known as “apps”. Each app possesses its own memory space and its 
specific knowledge base, carefully protected from others. Apps do not 
share their knowledge: it is frequent for one app to “know” a piece of 
information while others ignore it. In the human brain, this is charac-
teristic of unconscious processing. According to the GNW hypothesis, 
consciousness evolved to break this modularity. The GNW can extract 
relevant information from virtually any brain module, and make it avail-
able to the entire organism. Machines may benefit from a similar archi-
tecture for flexible information sharing, capable of broadcasting to the 
entire system a potentially relevant piece of information. “Blackboard” 
architectures of this type were proposed in the 1970s. It would be inter-
esting to pursue this idea in the context of present-day machine-learn-
ing algorithms, which are able to make the best use of the broadcasted 
information.

2.	 A repertoire of self-knowledge. To determine where the important infor-
mation lies and where to route it, I believe that brains and machines 
alike must be endowed with a repertoire of self-knowledge. By this, I 
do not mean a bodily sense of self, as might be available for instance 
to a robot that would know the location of its limbs (in the human 
brain, the construction of this body map is, in fact, unconscious). What 
I have in mind is an internal representation of the machine’s own abil-
ities: a database that contains a list of its apps, the kind of knowledge 
they possess, what goals they can fulfill, how fast they can operate, how 
likely they are to be correct, etc. Even young children, when learning 
arithmetic, compile such a repertoire of the different strategies at their 
disposal (Siegler & Jenkins, 1989). In a machine endowed with learning 
algorithms, self-knowledge should be constantly updated, leading to a 
concrete implementation of the Socratic “know thyself ”. 

3.	 Confidence and “knowing that you don’t know”. A conscious machine should 
know when it is wrong or when it is uncertain about something. In the 
human brain, this corresponds to meta-cognitive knowledge (cognition 
about cognition) which has been linked to prefrontal cortex. Even pre-
verbal infants know that they don’t know, as revealed by the fact that 
they turn to their mother for help whenever appropriate {Kouider}. 
There are several ways in which a computer could be equipped with a 
similar functionality. First, it could be endowed with statistical programs 
that do not just give an answer, but also compute the probability that 
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this answer is correct (according to Bayes’ law or some approximation 
of it). Second, a computer could be endowed with an error-detection 
system, similar to the brain’s error-negativity, which constantly com-
pares ongoing activity with prior expectations and spontaneously reacts 
if the current behavior is likely to be wrong. Third, this error-detection 
device could be coupled to a corrective device, such that the system 
constantly looks for alternative ways to get the correct answer.

4.	 Theory of mind and relevance. One aspect of consciousness, which may 
be unique to humans, is the ability to represent self-knowledge in the 
same format as knowledge of others. Every human being holds distinct 
representations of what he knows; what others know; what he knows 
that others know; what he knows that others don’t know; what others 
know that he doesn’t know; etc. This faculty, called theory of mind, 
is what allows us to model other minds and to use this knowledge 
in order to maximize the usefulness of information that we can pro-
vide them (relevance, as defined by Sperber & Wilson, 1988). Current 
machines often lack such relevance. A machine that could simulate its 
user’s mind would undoubtedly provide more relevant information. It 
would remember what it previously said, infer what its user knows, and 
avoid presenting trivial, useless, or otherwise contradictory information. 
Algorithms that handle such recursive representations of other minds 
are currently being developed (Baker, Saxe, & Tenenbaum, 2009; Dau-
nizeau et al., 2010). 

The above list is probably not exhaustive. However, I contend that con-
ferring it to computers would arguably go a long way towards closing the 
consciousness gap. According to the present stance, consciousness is not an 
essence, but solely a functional property that can be progressively approxi-
mated. Humans seem to be quite generous in attributing consciousness to 
others, including animals, plants, and even inanimate objects such as clouds 
or storms. The steps that I outlined here should bring us closer to attribut-
ing consciousness to machines. 
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Artificial Intelligence 
and Human Minds: Perspectives 
from Young Children
Elizabeth Spelke

Our species has a talent for technology: for imagining, crafting and us-
ing objects that extend our abilities and improve our lives. Although there 
is now much discussion, and some disquiet, over the prospect that future 
generations will live with autonomous machines that are more capable 
than we are, our talent for building such tools is not new. Even the earliest 
tools from human prehistory outperform us at their dedicated functions: 
arrowheads pierce animal skins better than fingernails, and bowls hold wa-
ter better than cupped hands. From the beginning, moreover, our tools 
have functioned not only with us, like the stone flakes that early humans 
used to cut food, but autonomously and for our benefit, like the roofs 
that shelter us. Our ability to develop such objects testifies to our singular 
ability, as adults, to foresee how currently nonexistent objects, functions, 
and activities can transform our lives and experiences. It also testifies to 
the power of children to develop adaptively within the highly variable 
environments that human ingenuity creates, learning culture-specific skills 
that have come to include agriculture, reading, mathematics, and modern 
engineering (Dehaene, 2009, 2011). 

Despite the ancient origins of our talent for technology, the emergence 
of machines that reason and learn prompts many questions, two of which 
pertain directly to the focus of my research, on the cognitive capacities of 
human infants and children. First, can the development of such machines 
shed light on the workings of young human minds and on the sources of 
our species’ cognitive talents: insights that could deepen our understanding 
of human nature and improve children’s education and welfare (Battro et 
al., 2011)? Second, will the presence of intelligent machines that interact 
with humans alter the ways in which children think and learn? If so, how 
can those machines best be structured to enhance children’s development? 
To approach these questions, I begin by reviewing some pertinent findings 
from research on early human cognitive development.
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Cognition in infancy
From birth, human infants perceive, act on, and make sense of their 

surroundings, anticipating its future states. Research provides evidence that 
infants both perceive inanimate objects when they are visible and track 
such objects when they are hidden, extrapolating object motions and me-
chanical interactions (Baillargeon, 1998; Stahl & Feigenson, 2015). Infants 
also perceive and reason about people and animals, predicting their future 
actions from their past behavior together with their powers to perceive 
accessible aspects of the environment (Gergely & Csibra, 2003; Luo & 
Johnson, 2009). And from the beginning, infants focus on people’s social 
communications, using their speech, gaze, and coordinated actions to infer 
their engagement with the infant (Meltzoff & Moore, 1977; Kinzler, et al., 
2007) and with one another (Hamlin et al., 2007; Powell & Spelke, 2013). 

Inanimate objects, agents, and social beings behave in fundamentally 
different ways: objects are governed only by the laws of physics, whereas 
agents plan their actions to achieve valued goal states while minimizing 
costs, and social beings engage with one another so as to share information 
and experiences. Research provides evidence that infants are sensitive to 
these differences (Spelke & Kinzler, 2007). They perceive and interpret the 
behavior of inanimate objects primarily by analyzing objects’ positions and 
motions, in accord with basic constraints that objects move as connected 
wholes on continuous paths and interact with one another on contact 
(Spelke, et al., 1995). Infants perceive and reason about the object-directed 
actions of people and animals by analyzing aspects of their shapes and mo-
tions (Bertenthal & Pinto, 1994), in accord with assumptions that agents 
perceive the world at a distance and act efficiently to transform it, in accord 
with their goals (Gergely et al, 1995; Woodward, 1998; Liu & Spelke, 2017). 
Finally, infants perceive and interpret people’s social motives and relation-
ships by analyzing their interactions with the infant and with one another. 
Recent research suggests that infants are especially sensitive to the asym-
metrical relations that connect caregiving adults to their children (Johnson 
et al., 2007; Spokes et al., 2017), dominant individuals to their subordinates 
(Thomsen et al., 2011), and socially responsive imitators to the targets of 
their imitation (Powell & Spelke, 2013, in review). 

These findings and others suggest that infants are endowed with core 
cognitive systems that form the foundation for the development of our 
common sense reasoning about the physical, living, and social worlds. 
These systems likely are connected, because agents’ actions are constrained 
by physics and people’s social bonds are conveyed by their actions. Never-
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theless, each core cognitive system functions in accord with a distinct set of 
principles and operates with a high degree of independence from the other 
systems, especially in infancy. For example, infants likely can view their pet 
cat as a social being (a member of their family, with distinctive relations to 
other family members), an agent (that chases after butterflies and chews on 
house plants), and an object (that is heavy to lift), but they do not readily 
construe the cat in these three different ways at once. Young infants also do 
not appear to recognize a central property of tools and other artifacts: that 
they are objects, designed to foster the instrumental goals of agents, for use 
within a community of social beings. 

Toward the end of the first year, infants’ understanding of objects, agents, 
and social beings comes together: infants begin to conceive of objects as 
members of one or another kind – a body whose form affords dedicated 
functions for itself (if it is a person or animal) or for members of the in-
fant’s social world (if it is inanimate: Xu & Carey, 1996). This conception 
emerges as infants engage with others and thereby learn one of the earliest 
emerging and universal features of human language: noun phrases whose 
head nouns refer to kinds of animals (“dog”), natural objects (“stone”, 
“tree”), or artifacts (“cup”). By nine months of age, infants expect each 
distinct noun to refer to a distinct kind of object with a characteristic form 
and function (Xu, 2007). Soon thereafter, infants begin to seek information 
about object kinds, asking of each thing that they encounter, “what is this?” 
and (if it is an artifact) “what is it for?” (Keil, 1989). There is wide consensus 
among psychologists that the capacity to view novel objects as individual 
members of novel artifact kinds is central to the child’s developing mastery 
of culture in general and technology in particular. Moreover, this capacity 
is widely thought to depend on infants’ predisposition to attend to their 
social partners, learning from their speech and actions (Tomasello, 2008; 
Csibra & Gergely, 2009). Because adults are apt to talk about things that 
matter to them, their language directs children to concepts that are socially 
useful. Because adults’ actions on objects, such as drinking from a cup or 
turning the pages of a book, both exhibit the objects’ functions and reveal 
aspects of their structure, those actions inform infants about the key prop-
erties of the things used in their culture. The artifact concepts that infants 
master at the end of the first year therefore serve as a basis for the prodi-
gious cultural learning that distinguishes our species from others, and that 
sets humans on a path that leads toward the world we now are considering, 
in which humans interact with autonomous machines whose intelligence 
and action capacities, in some domains, equal or exceed our own.
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Reverse engineering infant minds
Although research on human cognitive development has shed light 

both on what young infants know and on the fundamental changes in 
their knowledge that occur when one-year-old children begin to mas-
ter artifacts, the psychological and brain sciences have not yet achieved a 
deep understanding of the mechanisms and processes that give rise to this 
knowledge. The content of infants’ knowledge can be revealed by simple 
behavioral experiments, yet the most advanced investigations in experi-
mental psychology and neuroscience have not yet revealed the basic com-
putations of the human mind. 

With the emergence of machine learning and artificial intelligence 
comes the promise of this deeper understanding. From its beginnings, com-
puter scientists have aimed to build machines that learn as children do, the 
most capable learners on earth (Turing, 1950). Moreover, the most conspic-
uous recent successes in the field of artificial intelligence have centered on 
machines that are structured similarly to the brain’s perceptual systems and 
that are built to learn (LeCun et al., 2015). Symmetrically, cognitive and de-
velopmental psychologists have looked to research in computer science and 
mathematics for guidance in studying the basic computations of mature and 
developing human minds (Tenenbaum, et al., 2011). Coordinated research 
across these fields, developing and testing computational models of human 
cognition and learning, could deepen understanding of human minds in 
general, and the minds of infants and young children in particular, while 
guiding the development of ever more intelligent machines.

For example, recent thinking about infants’ “intuitive physics” – their 
grasp of the mechanical principles governing object motions and inter-
actions – has benefited from the development, in computer science, of 
physics engines that simulate these motions and interactions (Battaglia et 
al., 2013). Physics engines are used in animated films and interactive vid-
eo games to depict events in which objects collide, topple, or collapse on 
contact with other objects, surfaces, substances, and agents. The computa-
tional challenges solved by the designers of physics engines suggest insights 
into both the capacities of young infants and key limits to those capacities 
(Ullman et al., in review). For example, infants track moving objects over 
occlusion by taking account of their positions, motions, and approximate 
sizes but not their detailed shapes or surface texture (Baillargeon, 1998; 
Spelke, et al., 1995). For example, when young infants see a cup appear al-
ternately on the opposite sides of one screen, they represent one persisting 
object in motion, but when they see a cup and a shoe appear in alternation 
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on the screen’s two sides, they fail to represent two distinct objects (Xu & 
Carey, 1996). Physics engines might behave similarly, for they use coarse 
representations of an object’s position, mass, and motion in order to extrap-
olate its motion forward, and then call on stored, detailed representations 
of the object’s appearance so that it can be rendered, by graphics programs, 
at places where it is visible. The use of a coarse representation in the com-
putation of the object’s changing position and motion is accurate enough 
to appear natural to adults, while sparing the computations that would be 
required if every detailed feature of the object were extrapolated forward. 
Infants’ failure to track the detailed shapes of occluded objects may reflect 
a similarly efficient process for representing hidden object motion, and a 
division of labor between basic processes for representing objects’ dynamic 
properties and their visual appearance. 

Recent thinking about young children’s psychological and social rea-
soning has benefited in similar ways from computational models of action 
understanding (e.g., Baker, et al., 2009, 2017) based on the assumption 
that agents plan actions that maximize their rewards while minimizing 
their costs (Gergely et al., 1995), and that social beings act as well to maxi-
mize the rewards of their valued social partners (Jara-Ettinger et al., 2016). 
Recent experiments provide evidence that representations of action plans 
guide young children’s interpretation and evaluation of other agents’ ac-
tions, motives, and mental states. Three-year-old children who see a social 
character refuse to help another character judge the first character more 
harshly if the requested helping action was easy to perform (Jara-Ettinger 
et al., 2015), and 10-month-old infants infer that an agent values one goal 
object more than another if he is willing to take a higher-cost action to 
obtain one of the objects, even if his behavior toward the two objects is 
otherwise the same (Liu et al., 2017).

Computational modeling of early cognitive development is still in its 
infancy, but these and other studies suggest that a deeper understanding 
of young human minds, and of our species’ prodigious learning capacities, 
can emerge from coordinated research in machine learning, artificial in-
telligence, and human cognitive and brain development. Such an under-
standing may be critical to addressing key challenges posed by our rapidly 
changing technological landscape.

Protecting and enhancing children’s development 
As research on the nature of intelligence progresses, how will the devel-

opment of increasingly intelligent machines affect the minds of those who 
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use them, especially the children who learn with and from them? If artificial 
intelligence is to bring us new technologies that enhance our reasoning and 
benefit our lives, then this question looms large. Intelligent systems might 
extend our capacities by making useful information more accessible: for 
example, GPS-based navigation systems that display our current position in 
relation to our surroundings at multiple scales, and that bring us information 
about otherwise inaccessible events such as traffic accidents or roadblocks, 
have the potential to extend and enrich our representations of the environ-
ment. These same systems, however, could diminish our spatial cognitive ca-
pacities, if we use them to navigate for us, rather than to enrich and strength-
en our spatial knowledge. Research in cognitive neuroscience reveals that 
the basic cognitive systems by which humans navigate are fundamental to 
human spatial reasoning and memory, and they are strengthened by exercise 
(Burgess, et al., 2002). Like visual and motor systems, these systems likely 
are weakened by disuse: thus, a person who moves solely at the direction 
of a GPS navigator may both fail to develop a spatial representation of her 
surroundings, and diminish her memory capacities more generally. These 
two contrasting uses of contemporary technology suggest a question and a 
challenge: How should navigation aids be crafted so as to enrich, rather than 
diminish, our ancient, autonomous capacities for spatial reasoning? Similar 
questions, calling for research, are raised by intelligent systems that help us 
plan our days, remember friends’ birthdays, or select our music.

The advent of intelligent machines raises especially pointed questions 
concerning children’s learning, including the learning that propels our tal-
ent for developing novel technology. Throughout history, children have 
learned both by acting and by observing the actions of their elders, who 
manipulated artifacts with perceptible structures and functions. In the sec-
ond year, children become highly attentive to the manner in which adults 
act on objects, and highly predisposed to reproduce those actions exhibit 
(Tomasello, et al., 2005; Lyons et al., 2007). Young children also begin to 
attend to adults who copy their own detailed actions on objects (Agnetta 
& Rochat, 2004), and to the structural properties of the objects that adults 
manipulate (Booth & Waxman, 2002). These developments recruit infants’ 
earlier developing sensitivity to object shapes and motions, to agents’ de-
tailed, multi-step actions, and to social beings’ shared experience to propel 
a key feature of human cognition: the rapid development, in childhood, of 
encyclopedic knowledge of object kinds.

How will this development proceed for the current generation of in-
fants, born into families using the tablets and smart phones that are now 
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ubiquitous in many societies and constant companions to many parents? 
In contrast to the artifacts that smart phones replace, such as telephones, 
cameras, and books, smart phones have multiple functions. Neither the 
structures that permit their functions, nor the actions of their users, are 
perceptually accessible to the child (or, in most cases, to other adults): when 
a parent looks at and taps on a cell phone, he could be engaged in any of a 
multitude of diverse actions, undertaken to realize an even larger potential 
set of goals. His observable behavior does not reveal his action plans. 

If multipurpose machines take on more and more of the functions that 
previously were performed by perceptually distinct objects, whose struc-
ture afforded specific actions that were diagnostic of their function, how 
will children develop the encyclopedic knowledge of object kinds that 
has long served as a foundation for cognitive development? Will future 
generations of children learn directly from smart machines, whose func-
tioning has made the actions of other people less informative? Because 
the structures that support the behavior of these machines cannot be seen, 
and the behavior of adults who use them is only minimally informative 
about their goals, plans, and social relations, will children be less inclined 
to explore objects, or to use the object-directed actions of other people, so 
as to learn about the structure and functioning of the physical, living, and 
social world? If so, what will children learn in a world of smart, interactive 
machines, and how will their learning impact their social and cognitive 
growth? Because humans invent technologies for human benefit, we can 
combine and invert these questions: What kinds of intelligent machines 
should computer scientists aim to create, in order promote and support 
young children’s cognitive development and well being?

Past research on cognitive development in infancy and early childhood 
does not answer this question. Although that research has taught us a great 
deal about what infants and young children know at different ages, it does 
not support strong predictions concerning children’s learning in radically 
new or hypothetical environments. To make such predictions, the brain 
and cognitive sciences must achieve a deeper understanding of how infants 
and children reason and learn. 

Fortunately, collaborative research in cognitive science, neuroscience 
and computer science promises to deepen our understanding, providing 
insights that can inform the development of new technologies to enhance 
children’s lives. Side by side with our talents and propensities for trans-
forming the world in ways that create both new opportunities and new 
problems, our species has a striking capacity for foreseeing the potential 
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problems and addressing them. Thus, the development of physics and the 
atmospheric sciences has allowed its practitioners to anticipate, and devise 
ways to counter, the catastrophic consequences of massive climate change 
or global nuclear warfare – two challenges posed by human technological 
progress that now can be foreseen and countered, even though nothing 
in our history provides a precedent for them. Similarly, the development 
of computational cognitive science promises to bring knowledge that can 
support the design of thinking machines that act for the benefit of all peo-
ple, and perhaps especially for the benefit of children, the most vulnerable 
and gifted human learners. I believe it will best do so if computer scientists 
and cognitive psychologists work together to achieve a better understand-
ing of developing human minds.
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Neurotechnology For Human 
Benefit and the Impact of AI
John P. Donoghue

Neuroprosthetics is an emerging field that is beginning to provide a 
technological approach to restore lost sensory functions, restore movement 
for those with paralysis, or repair cognitive deficits produced by disordered 
brain circuits (Donoghue, 2015). Neural prosthetics are technologies (i.e. a 
system of devices) that can be placed in or on the body to partially recover 
lost sight, hearing, or movement, or repair brain circuits that affect mood, 
memory or movement are either already available commercially or in hu-
man clinical trials, and there is a growing pipeline of new neurotechnolo-
gies emerging from research laboratories. It is possible to use technology 
to repair and restore function both because of an impressive (but still very 
incomplete) body of neuroscience knowledge and the transformational 
technology and information processing achievements of the last decades. 

Our sense organs provide electrical patterns of information about the 
state of the world. Neural machinery spread across the central nervous system 
uses those patterns to compute new representation patterns that nearly always 
make sense to us when processed properly in the brain. (How this remarkable 
process occurs is the driving force for a large fraction of neuroscientists). On 
the output side of the nervous system we are capable of an enormous reper-
toire of dexterous movements, like piano playing or ballet dancing. To gener-
ate skilled voluntary movement, the brain plans actions by assembling sensory 
signals and internally known information and outputs out electrical patterns 
that drive the coordinated muscle activity. Brain networks, in ways still quite 
unclear, also capture, store, organize, and generate memory, behavioral plans, 
and other cognitive functions. All this appears to include computing new 
information from internally generated activity patterns. 

Fundamental knowledge about how the nervous system codes and com-
putes information is now sufficient, and computing hardware and software 
good enough, to create neural prosthetic systems that can write-in or read-
out neural codes to reproduce aspects of sensory and motor functions, and 
correct abnormal cognitive brain networks when these functions are lost 
or disrupted due to disease or injury. However, current neural prosthetics, 
which aim to emulate the function of neural circuits, still perform well be-
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low their biological counterparts, largely from two broad limitations. First, 
knowledge of brain function, particularly as an integrated information pro-
cessing system, remains inadequate. Second, technology needed to replace 
neural function cannot adequately capture signal patterns and then copy 
computations that occur in most real neural networks – a software problem 
– and the devices capable of these computations are bulky, power-hungry 
and slow compared to their biological counterparts, and they are difficult 
to integrate into body – a hardware problem. Nevertheless, neuroscience 
knowledge is sufficient, technology adequate to create useful neural pros-
thetics, but there is great room for improvement. AI is one area that may 
be able to contribute to a major advance in the processing capabilities of 
neural prosthetics. Here, I will provide a high level overview of the cur-
rent state of neural prosthetics from four examples of clinically motivated 
prosthetics, discuss the limitations faced now. In the spirit of this volume, I 
will comment on how AI could be a valuable approach to improve sensory, 
motor and brain circuit neural prosthetics (Fig. 1). AI is used specifically 
to refer to the deep learning approach (Hinton et al., 2006) (LeCun et al., 
2015), because, as will be illustrated below, neural prosthetics suffer from a 
common challenges of detecting often incomplete activity patterns in raw 
complex and poorly characterized signals and transforming them into a 
new representation. The ability for Deep Learning DL nets to be able to 
generate reliable outputs in complex data is well suited to this class of prob-
lem, perhaps not surprisingly because DL nets are an attempt to copy the 
very processes neural prosthetics are trying to replicate. Figure 1 provides 
more detail and a schematic of this problem in the context of each of the 
examples that will be described next.

Sensory, Circuit and Motor Prosthetics
Four devices illustrate the current state of neurotechnology in helping 

humans: sensory neuroprosthetics for hearing and for vision restoration, 
deep brain stimulation (DBS) to modulate dysfunctional brain circuits, and 
(3) brain computer interfaces (BCIs) to restore movement. These neuro-
technologies exemplify the forms, spectrum of developmental stages, and 
state of our ability to restore brain function with technology. Each could 
be enhanced through the methods available from the field of AI. 

Sensory Neurotechnology 

Each sense organ is an exquisite structure that provides the brain with 
spatially distributed and temporally changing patterns of electrical impuls-
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es emanating in large sets of neurons. These spatiotemporal neural activity 
patterns are a filtered version of various forms energy in the world – sound, 
light, chemicals, or mechanical forces. When activated through its special-
ized sense organ traveling initially through selective pathways, the brain 
interprets these patterns, for example, as sounds (air pressure changes trans-
duced from the eardrum through the cochlea) or vision (electromagnetic 
radiation from 390 to 700 nm wavelength processed through the retina). 
Neural patterns are transformed and spread widely in brain networks, con-
tinuously ‘computing’ activity patterns (at least in the conscious state) that 

Figure 1. Role of AI algorithms in Sensory, Circuit and Motor Neural prosthetics. A. Sensory neu-
ral prosthetics to replace lost sensory receptors. Deep Learning neural nets would be used to 
learn the optimal match between natural sound or light patterns (colored arrow input to encod-
ing ‘machine’) and patterns of stimulation (colored arrow output). The prosthetic device deliv-
ers this artificial pattern to brain pathways (black) via a stimulating (writing in) neural interface 
(blue) in sensory organ, after degeneration of sensory receptors (speckling). B. Circuit prosthet-
ics modulate ‘imbalanced’ brain circuits (dashed arrow) to restore circuit function using stim-
ulation targeted at a critical node in the pathway. Here deep learning could be used to search 
the stimulating pattern that best restores function. Here, a readout of either circuit activity or 
behavior would be needed to find optimal stimulation patterns. C. Motor prosthetics readout 
a limited sample of motor intentions (due to the restricted number of recording channels) from 
the brain through an electrode array (blue neural interface). Deep learning would be used to 
learn the best mapping between this incomplete neural signal pattern and a desired movement 
command signal pattern (decoder output) that would provide the best signal to operate devices 
like a computer for spelling, a robot arm to perform reach and grasping actions, or to activate 
muscles as a way to reconstruct the path from the brain to the body. Ideally, the implementation 
of AI (both the computational framework and computational power) could generate rich com-
mands from these incomplete patterns to produce flexible, complex actions based on a limited 
sample of the desired control generated in neural activity patterns.
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lead to the perception of an the object or the understanding of a spoken 
word (Fig. 1A). Thus, a large part of brain information processing appears 
to be the transformation of one pattern into another, put in a shamefully 
over-simplistic way. Damage to a sense organ disconnects the brain from 
that perceptual system (and more), limiting the use of that input to under-
stand, remember or interact with the world. Most often, sensory receptor 
degeneration (e.g. inherited genetic disorders, mechanical damage) is the 
reason a sensory capability is lost, but the computing neural hardware re-
mains without receiving patterned input needed to compute (Mysore et 
al., 2015). Available neural prosthetics can provide these lost patterns for 
both hearing and sight. 

Hearing 

The cochlear implant is the benchmark neurotechnology achievement 
for a human disorder. More that 250,000 devices have been implanted, al-
lowing, for example, deaf children to attend standard educational programs. 
Nevertheless the understanding of sounds in the world is not at the level 
achieved by the intact biological interface between our acoustic world and 
the brain. This still crude neural prosthetic device has a profound personal 
and social impact (Bond et al., 2009). 

The cochlea is a snail shell-shaped structure at the end of the middle ear 
where the mechanical motions of sound are converted by receptive hair 
cells lying a thin sheet along the length of the cochlea. Mechanical motion 
of the hairs atop these receptor cells result in electrical activity patterns in 
auditory nerve fibers, which connect to each hair cell. Sound generates 
patterns of activity across the auditory nerve. Many forms of deafness are 
the result of hair cell death but the auditory fibers typically still remain. 
A cochlear implant bypasses missing hair cells by delivering an artificial 
spatiotemporal electrical impulse patterns directly to the auditory nerve 
fibers in the cochlea. These electrical impulses, which at first are non-sense 
signals to the user when first supplied, over time become recognizable in 
brain auditory networks as meaningful, although not natural sound. Re-
markably, comprehensible speech emerges when fewer than a dozen elec-
trodes in the cochlea are used to replace thousands of lost hair cells. Thus, 
what is ordinarily a very rich spatiotemporal pattern of natural sound, can 
be replaced by impoverished pattern of electrical stimulation that the brain 
can still meaningfully use. 

In the cochlear implant device, sounds are captured by an external mi-
crophone and processed using electronics housed in a small package worn 
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behind the ear. The impulses are transmitted wirelessly through the skin 
to an implanted receiver-stimulator connected to a flexible, pencil-lead 
thin electrode that is threaded into the cochlea. In the intact ear, hairs atop 
different cells wiggle to different sound frequencies – different spots for 
different frequencies – which is in a simple sense a place code. Thus, the 
cochlea, in its simplest sense, has tonotopic map of sound in that frequen-
cy response is arranged spatially along the length of the cochlea. However, 
the actual transduction involves complex actions across the cochlea. In 
the healthy cochlea, hair cells chemically communicate their activation to 
auditory nerve fibers below them. The cochlear implant bypasses missing 
hair cells by directly activating auditory fibers, albeit with an electrode 
that probably activates hundreds of fibers at once because each stimulation 
site activates many fibers at once. Despite the impossibility of the current 
implant being able to recreate natural spatiotemporal auditory nerve fiber 
activity patterns, it is nevertheless quite successful in providing useful sig-
nal to the brain. In essence, the cochlear implant transforms sound in the 
world into a spatiotemporal pattern; this transformation is an attempt to 
copy the computation that the sound should have produced in the audi-
tory nerve. A useful video of the system can be found at: www.youtube.
com/watch?v=u8LpjkfvaSU.

Cochlear implants do not produce a natural sound in part because the 
technology cannot produce the correct spatiotemporal activity patterns 
in the auditory pathway nerve. We lack an understanding of how to com-
pute natural neural patterns from sound. The inadequate transformation 
probably accounts for problems such as the difficulty users have under-
standing speech in noisy environments. Here is where AI strategies could 
improve function. Deep learning might provide an effective way not only 
in learning the optimal spatiotemporal pattern of stimulation to compute 
percepts from sound, but also help to learn and then generate missing 
components in the neural signals needed to correct for changing environ-
ments. Static sound processor algorithms aim to find the best algorithm, 
but deep learning approaches that identify relationships between input 
and output patterns to solve problems like filtering speech in crowds are 
already beginning to show promise (Healy et al., 2015). As will be re-
peated in the subsequent examples, these biological, computational and 
technological shortcomings of cochlear implants are shared by all current 
neurotechnologies and AI may be able to help improve pattern transfor-
mation across all of them. 
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Sensory Neurotechnology – vision

Retinal implants, another neural prosthetic device that has recently 
been approved, has the ability to restore a level of vision for people with 
blindness from retinal degenerative disorders. Several hundred have already 
been implanted. Like hearing, vision involves the transduction of a com-
plex pattern light that falls on the retina into a neural activity pattern, that 
is further computed in brain networks and interpreted as form, structure 
or meaning. Photoreceptors and the ensuing circuitry at the back of the 
tissue-paper thin retina at the back of the eye produce spatiotemporal ac-
tivity patterns. This pattern is transmitted to the brain via ganglion cells, 
which project their axons from the retina through the optic nerve to mul-
tiple sites in the brain. Vision, especially when in the service of a behavior, 
engages networks across vast extent of the nervous system, again in a con-
tinual re-computing of one pattern into another. 

Vision loss is commonly the result of photoreceptor degeneration (e.g. 
macular degeneration (Mysore et al., 2015)), which stops light from en-
gaging the first step of the retinal circuit that leads to ganglion cell acti-
vation, the obligatory path from eye to brain. Typically, ganglion cells and 
their brain connections remain, a parallel to auditory receptor (hair cell) 
degeneration with the auditory nerve remaining. Retinal implants, which 
were first approved in the US in 2013, have followed a design similar to the 
cochlear implant: A set of electrical stimulating electrodes is used to replace 
lost photoreceptors to activate intact visual projections, via the ganglion 
cells, to deliver spatiotemporal pattern of information to the brain (Lin 
et al., 2015). For a retinal implant, a two-dimensional sheet of stimulating 
electrodes is laid at the back of the eye (above or below the retina). Patterns 
of light detected on a camera (worn outside the body) are transformed into 
spatiotemporal electrical stimulation pattern on the array, which activate 
the ganglion cells. The activated ganglion cells carry this artificial pattern 
from the eye, through the optic nerve, to the brain. The user perceives this 
patterned electrical stimulation of the retina not like a typical visual scene, 
but instead the image is reportedly somewhat like a pattern of light flashes 
on a movie marquis made of many light bulbs. The number of artificial 
visual channels is low: dozens of electrodes are tapped into the roughly 
one million channels that go from the human eye to the brain. Importantly, 
retinal stimulation bypasses the complex intraretinal ‘computational’ neural 
machinery that transforms the light pattern falling on the photoreceptor 
sheet into a new pattern in the ganglion cells. ‘Vision’ provided by neural 
prosthetics can require significant time for the users to interpret, presum-
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ably as the brain mechanisms are used to interpret this unusual pattern of 
activation. An example showing the use of a retinal implant is available at: 
www.youtube.com/watch?v=DTiVKvs_lXg.

The fact that vision is possible with a neural prosthesis is remarkable, 
and of great impact for those seeking to see again. However, restoration of 
natural vision will ideally require much better hardware (to couple more 
channels across the full extent retina) and processing to recreate natural 
vision, including mapping computation that occurs in the retina itself. For 
vision, AI could help in learning and then computing a more effective 
representation of signal that are produced after light is processed by the eye 
and retinal circuitry, which could produce more natural vision and help 
correct for real world complexities like changing illumination that the 
brain ‘expects’ from the eye. AI based on deep learning of natural scenes, 
which can perform many human-like perceptual functions, appear not to 
have been implemented in retinal prosthetics yet, but should be able to 
help the still small number of channels activated by the neural interface to 
create more natural activity patterns, leading to more natural vision. 

Brain Circuits – Neuromodulation prosthetics
Stimulating sensory neurons activates pathways that are eventually in-

terpreted by brain circuits. These circuits store information in memory, 
or can immediately invoke action, or delay it for later actions (planning). 
Highly interconnected brain networks quickly and flexibly combine in-
formation from any input and various ‘internal circuits’ to engage almost 
any output in ways still poorly understood. Disorders that emerge from 
imbalanced activity of certain brain networks appear to lead to perceptual, 
cognitive (including affective), and movement disorders. Neural prosthet-
ics to correct malfunctioning circuits through targeted electrical stimu-
lation-termed neuromodulation are already in use, although they currently 
engage ‘brute force’ tactics that inject electrical impulses within a complex 
circuit without fully understanding how this injected ‘information’ mod-
ulates the computations produced by this network. The most remarkable 
and widely used example of neuromodulation success is the use of deep 
brain stimulation (DBS) in Parkinson’s disease (PD), where the shaking, 
rigidity and tremor of the disorder is relieved by stimulating a particular 
point in a cortical-basal ganglia circuit at about 100 times per second. 
Parkinson’s disease is the result of the loss of the neurotransmitter dopa-
mine, which is essential for the normal operation of cortical-thalamic-basal 
ganglia networks that control movement planning and performance, as 
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well as cognitive functions. Exactly how these circuits work, or depend 
on dopamine is not fully understood, but remarkably DBS stimulation at 
one node in this circuit overcomes the dopamine-induced deficit, read-
justing the circuit so that it operates more normally, as long as stimulation 
is continued. With DBS, which has been applied in more 150,000 people 
symptoms are diminished often substantially (but not cured). 

Deep brain stimulation (DBS) is a process of using a pattern of electrical 
stimulation through an electrode surgically inserted into a select region of 
a basal ganglia thalamo-cortical loop (i.e. subthalamic nucleus, STN) in 
order to alter the functional activity level, of a part of that circuit (Fig. 1B). 
Typical DBS electrodes consist of a spaghetti noodle-sized probe with four 
(or more) mm sized metal contacts near its end. The probe is inserted into 
the STN, a collection of neurons about the size of a lentil bean. Repeat-
ed electrical stimulation in STN – through an electronic pulse generator 
placed under the skin of the chest – modulates brain circuit function pre-
sumably modulating the circuit so that it computes properly. Typically one 
electrode is used, but multiple electrodes are being evaluated as a way to 
create more complex or accurately localized spatiotemporal patterns. The 
result in PD is impressive (one of many videos of the effect at: https://
www.youtube.com/watch?v=17ch1guvoLA).

The safety profile for DBS implantation is quite good (DiLorenzo et al., 
2014). But not surprisingly, DBS can have side effects, including effects on 
cognition (Wu et al., 2014), perhaps due to the large electrodes (>1mm), 
the difficulty in very exact placement requirements, the proximity of other 
circuits to the stimulation site or the type of stimulation pattern employed, 
but it remains impressive that crude stimulation works so well. Tuning 
stimulation parameters is complex. DBS is now open loop, in that it does 
not use information about activity patterns in the circuit to shape the best 
stimulation pattern. This is hindered in part by the difficulty in monitor-
ing the state of the circuit, although at least basic macro recording is now 
beginning to be possible. When readout is available, AI might be useful in 
finding intelligent ways to adaptively learn the best timing or intensity of 
stimulation to optimize the effect, which now is a barrier to effective DBS 
therapy (Arlotti et al., 2016). Effectively this plan would produce a bioelec-
tronics hybrid brain circuit. 

DBS is also being investigated as a circuit neuroprosthetic for broad 
range of other disorders including affective disorders like depression (Choi 
et al., 2015), obsessive-compulsive disorder (repetitive habits) (Fayad et al., 
2016) and memory loss in Alzheimer’s disease (Mirzadeh et al., 2016) in-
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volving various other frontal circuits. The potential for DBS success in 
affective or cognitive circuits still requires considerable further inquiry. Ad-
vances are currently limited by our poor understanding of computations 
occurring in these complex, dynamic brain circuits, difficulties associated 
with knowing how or where to intervene in these networks, and availabil-
ity of technology to precisely deliver correct spatial and temporal patterns. 
DL approaches would potentially be helpful in repairing these circuit dis-
orders, by learning from abnormal brain patterns (by reading out patterns 
of activity) and converting them into meaningful activity patterns for that 
circuit (writing in by stimulation of the correct circuit sites). 

Changing brain circuits raises ethics issues. DBS provides a tool to shape 
virtually any brain circuits including those affecting personality or behav-
ior and therefore must be judiciously monitored for ethical application. 
The concept of altering brain circuits, and potentially behavior, with elec-
trical stimulation (or other forms of energy) is more immediately concern-
ing as simpler, but much less precise brain stimulation devices are used. It 
is now possible to influence circuits with technology that can be applied 
outside the head, which has growing adoption in the public. Most specif-
ically, Transcranial Direct Brain Stimulation TDCs is possible with every-
day technology (batteries and saltwater soaked sponges on the head) and 
it is very cheap and easy to make. TDCS has a popular following and is 
being used for every imaginable issue, often with no valid scientific back-
ing (Wexler, 2017) raising ethical, legal and social concerns (Kuersten and 
Hamilton, 2014).

Movement restoration – Brain computer interfaces

Voluntary movement also emerges from brain circuits and, not surpris-
ingly, is elaborated by a vast network of central nervous system structures. 
However, the corticospinal pathway, a bundle of axons connecting neurons 
in cerebral motor areas to the spinal cord, is one critical path that provides 
a patterned input to the spinal cord (and many other structures) to gener-
ate skilled movement particularly of the fingers and hand. Paralysis results 
from a number of disorders, including stroke, spinal cord injury, or trau-
matic brain injury. When any of these disorders disrupts the corticospinal 
pathway anywhere along its route, paralysis of useful, skilled actions includ-
ing hand motion, walking or speech may occur. A brain computer inter-
face (BCI) is a system that is designed to bypass damaged brain structures 
and restore brain-controlled movement by using brain activity patterns as 
a source of movement commands. BCIs recreate action commands from 
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limited samples of neural activity patterns from brain areas that have activi-
ty patterns related to movement intentions. These patterns can be read out 
and decoded into commands able to operate devices like a computer or a 
robot, or even the paralyzed muscles themselves. A BCI can be considered 
as the converse of devices discussed so far, in that a BCI is intended to read 
out brain activity (i.e. recording activity) so that intentions can become 
actions, rather than trying to write in signals into the brain or nerves. BCIs 
have been used in investigational studies in fewer than 20 people with 
severe paralysis to restore their ability to move or interact with the world. 
(for more comprehensive reviews see: (Donoghue et al., 2007; Hatsopoulos 
and Donoghue, 2009; Homer et al., 2013).

Movement intentions arise from a spatiotemporal pattern of activity 
in cortical neurons across a network of cerebral motor areas. The primary 
motor cortex (MI) is a major origin of the corticospinal pathway and a 
key node in a much larger cerebral motor network. Using an aspirin-sized 
bed of 100 hair-thin probes that are inserted just into the surface of the 
MI arm region, it is possible to record patterns of neural activity from a 
each of many individual neurons that reflect the coordinated motions of 
the arm, say to reach and grasp. Current, typically static, algorithms make 
it possible to convert that pattern from a small sample of neural activity 
into control signals that can allow a person who is fully paralyzed to con-
trol a multijoint robotic arm well enough to pick up a container of coffee, 
drink from it, and put it back on the table (for video see: https://www.
youtube.com/watch?v=ogBX18maUiM). Other groups have extended 
this work and demonstrated even more dexterous control (Collinger et al, 
2013). However, actions of computer cursors or robotic arms using BCIs 
are slow and far less dexterous than we effortlessly accomplish all the time. 
The computational power of AI, by potentially learning better mappings 
between limited, complex patterns of cortical neural activity and the req-
uisite command structure, could provide a much richer, faster and complex 
control (Fig. 1C). As depicted in Fig. 1 for motor systems, current sensors 
only sample incompletely – they have access to a tiny fraction of the ac-
tivity ongoing to coordinate even the simplest reach and grasp action. Op-
timized DL algorithms (and hardware) might be able to make up for the 
small sample and missing information to achieve the speed and dexterity 
achieved by able-bodied people. DL could also benefit from information 
about real world actions which help constrain the problem (Howard et al., 
2009), but this has not yet been tried. 
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Conclusions
Neural prosthetics are remarkable mainly early stage attempts to replace 

missing neural structures, but they are not able to fully replicate the brain 
structures they are intended to replace. Their shortcoming emerges from 
technology limitations, namely the inability of current electrode interfaces 
to address (write in) or sample (read out) the full spectrum of channels, the 
size of computational technologies which can limit their processing power 
or portability, or their compatibility with the body. Importantly, successful 
neural prosthetics are limited by the inability to reproduce computations 
of biological circuits, which can be simplistically reduced to a problem 
of computing one spatiotemporal pattern from another. The problem is 
exacerbated by incomplete and noisy information inherent to neural data. 
Deep learning appears to be a framework very well suited to more faith-
fully mimic this computation compared to current approaches, because 
this approach is particularly good at finding high-level abstractions, (i.e., 
complex patterns) in large-scale data. 

AI, ethics and the limitations and potential of Neuroprosthetics

The promise of neurotechnology to improve human health is substan-
tial and not limited to the examples given above. There are many other 
neuroprosthetic technologies where advanced, intelligent computing can 
help improve the lives of those with neurological disorders or injury, such 
as creating a brain controlled artificial limb for people with limb loss. In 
my view, these technologies are likely to be realized, although it is very 
difficult to predict the timing and pace of success when fundamental re-
search issues still are required. ‘AI’, neuroscience and engineering advances 
will all play a role in realizing more effective technology to restore vision, 
hearing, cognition, or movement to those disabled by nervous system dis-
orders. AI offers neuroprosthetics a means to learn and then implement 
computations like those achieved by neural circuits, without full under-
standing how these computations are achieved. As they are integrated into 
neural functions, they may provide a framework to create more and more 
brain-like computing that could replicate or even exceed those capabilities. 
We should be aware of the impact of such advances on society and the 
individual.

Accelerating AI and in neuroprosthetics successes indicate that we are 
at an inflection point where the ability to augment human function with 
these bio-machine hybrids, though still a long way off, can be realized. Full 
restoration of humans who have lost critical functions of their nervous sys-
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tem would be an outstanding success for neuroengineering, the extension 
of this to ways to augment abilities in able-bodied individuals is easy to 
imagine as medical applications expand. One might envision retinal im-
plants enabling night or infrared vision, or, more fancifully, memory circuit 
stimulation to double memory capacity. These speculations raise ethical 
and social challenges that need to be evaluated now in the scientific and le-
gal communities so that we are prepared as these capabilities emerge. Lastly, 
it is important to recall that there are other big challenges to achieving the 
bionic human either to overcome disability or to augment function. High 
resolution communication with the nervous system, for the foreseeable fu-
ture, will require surgical interventions that will slow adoption, due to cost 
and real or perceived risk, and will surely influence social views on using 
this type of neurotechnology.
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Who Am I? The Immersed 
First Personal View
Laurie Ann Paul

Case 1. On a train to a new destination in a foreign country, you are 
lulled to sleep by the gentle rocking of the carriage. Suddenly, you are star-
tled awake by a sudden stop and the opening of the compartment doors. 
You realize you must have missed your stop! You leap up, gather your 
things, and jump off. You have no map and no phone. Disoriented, you 
wonder, where am I?

Case 2. You are using your virtual reality headset to explore a high 
mountain ridge in the Alps. As you walk along the thin edge of a precipice, 
you trip over a concrete block that your business partner, a known practical 
joker, put on the floor of the room you are in. A rush of fear combined 
with a disorienting return to external reality jerks you from your VR ex-
perience back into the room.

What is your mind doing when it reorients itself?

1. The self in experience and decision
Exploring these sorts of disorientation can help us to articulate the 

structure of what it is to be a self. Understanding the constituent features 
of one’s self is highly relevant to questions of artificial intelligence and to 
designing a machine that could be a thinking self or that could think like 
a human. 

A related philosophical connection is to recent work on the nature 
and structure of transformative decisions, experience, revisionary epistemic 
change, and self-change (Paul, 2014a). That work explores the deep epis-
temic structure of how we understand who we are, and how we re-con-
struct ourselves through major epistemic upheavals. With transformative 
decision-making, the focus is on decision models for first personal de-
cisions. A central idea involves the concept of transformative epistemic 
change: some decisions can lead to epistemic changes so profound that 
they create significant self-change. An example that brings out the idea 
involves a congenitally blind saxophonist. 

Imagine a blind adult who makes his living playing the saxophone. 
One day, he is offered a one-time-only chance to have retinal surgery to 
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become sighted. How does he assess the decision of whether to have the 
surgery? In this kind of case, before the epistemic change occurs, there 
is no way for him to imagine or represent the experiential nature of the 
change. What will it be like for him to become sighted? In effect, he has 
the chance to have a new kind of experience, an experience that he cannot 
assign a subjective, experiential value to. He cannot assign an experiential 
value because he lacks the capacity to imaginatively represent the nature 
of this lived experience.

The situation raises a distinctive set of decision problems, some of them 
associated with his inability to grasp his possible future self as a sighted 
adult. The problem illustrates ways we can lack the ability to imagine and 
model our future selves, and to assign values to possible lived experiences 
when our futures involve dramatically changed selves. By extension, it il-
lustrates problems with formulating diachronic decision rules for radically 
incommensurable selves. 

All of these ideas, at bottom, are founded on an understanding of the 
nature and structure of the experienced self, and on a picture where, from 
the first personal perspective, in many ordinary contexts, we are selves who 
plan, decide, and act as we evolve forward in time. 

2. Constitutive features of selves
Today, I want to focus on identifying some of the foundational elements 

of the experiencing self. My interest in the examples of the train and the 
virtual Alps is in how they can be used to highlight constitutive features 
of thinking selves. Such features may be so basic that we don’t explicitly 
attend to them in ordinary contexts. The examples also help us to take a 
distinctive perspective: they help us take the first personal view of the self. 
The view of the self, a view from an immersed perspective, is different from 
the view on the self.

To construct a machine that can think like a human, we want to find a 
way to represent a first personal point of view and capture the way that a 
self, from its perspective, deliberates and functions in the world. Ordinarily 
when people think about the self, they start by thinking about how an 
individual recognizes itself as a thinking self, usually in terms of what that 
self values or desires, its intentions, and how it has self-awareness. But this 
builds in a lot right away. 

I am starting at a more fundamental level. To understand what a self is, 
and how an individual knows who she is, we need to understand her im-
mersed perspective. We need to understand the view of the self in question. 
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This involves an exploration of the fundamental experiential structure of a 
first personal point of view.

So my first point is that the underpinning of an individual’s understand-
ing of who she is, of her self-conception and self-awareness, is structured 
by her consciously centered, experiential point of view. 

What is a consciously centered, experiential point of view? An example, 
couched in terms of camera angles, can help to bring the idea out. Think 
of the sort of view that you get with a Go Pro, a type of digital camera 
designed for filming action while being immersed in it. Or take an im-
mersive computer game. An “immersed first personal viewing angle” is a 
distinctive and important camera angle that you get from, metaphorically, 
occupying the boots of your character in a computer game. The view is as 
though you were looking out the eyes of the character, seeing the world as 
it sees the world. This captures the first personal visual perspective of the 
player. Computer games can add a further level of cognitive immersion 
from an action camera if they give you a certain amount of control over 
the character’s visual perspective and actions. 

The immersed first personal camera angle, set up as though you were 
looking out from the eyes of the character, gives us a visual analogue of 
an individual’s consciously centered, experiential point of view. Note that 
the analogy is only partial, because the centering it represents is largely just 
visual and causal. A person’s first personal perspective brings in more than 
this, as it is both a sensory and cognitive centering of the perspective. 

Part of why I am emphasizing immersion here is that, when thinking 
about these issues in the abstract, we can miss details by moving too quick-
ly. We can shift, almost without noticing it, into a third personal approach 
to the self. This shift is like shifting from the immersed visual angle where 
I am occupying the boots of my character to a third personal viewing an-
gle using a “follow camera” to track my character. The importance of this 
difference is represented in how distinctive it can feel to make this visual 
shift in gameplay. Moreover, the shift in perspective can change the way the 
player is able to solve tasks in the game, aligning the perspectival shift from 
first personal to third personal with a functional shift.

When reasoning about the self, if we only explore the third personal 
angle, we miss the difference between, for example, a self being located in 
time and space and the experience of being located in time and space. A 
self may be located in space and time, but it’s the immersive or centered expe-
rience of being located which is a constituent of the self. This is not the same 
thing as just having a location in space and time!
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Further, if we miss the crucial difference between having a location 
and the immersive experience of being located, we can miss the deeper 
structure of how the immersive experience of being located is comprised 
of a sense of being here, now, along with coordination to external spatial 
and temporal cues.

My second main point is that these sorts of immersive experiential fea-
tures are part of what make up the self. In the two examples I started with, 
you are disrupted along some dimension of your first personal orientation. 
In the train case, where you wake up and jump off the train, you are spa-
tially disoriented, because your internal representation and monitoring of 
your spatial location (which involves keeping it correlated with the exter-
nal facts) has been disrupted. To orient yourself, you need to recalibrate by 
finding your location on a map.

This disorientation highlights the immersive, first personal experience 
of being located which is different from knowing your location on a map. 
Ordinarily, I have an immersive experience of where I am created by con-
stantly coordinating or updating my immersed first personal sense of being 
at a location with my third personal perspective or map view of where I am. 

Time and temporal experience are the same. I engage in regular cali-
bration and updating of my experienced temporal location by comparing 
my experienced sense of what’s present or now, and my sense of how much 
time has passed, and coordinating it with my location as understood exter-
nally, using a clock.

There is an even deeper sort of temporal coordination involving the 
direction of time. My personal sense of time passing, and of the deep dif-
ference between the past and the future, are fundamental structural features 
of my point of view, and I orient myself in the world by coordinating this 
internal point of view with the external world. (Consideration of time 
travel cases can bring this out: imagine looking out the window of the time 
machine and watching the world running backwards as, inside, you live 
forwards). My internally directed, asymmetric sense of what counts as past 
and what counts as future are constituents of my first personal self. I find 
myself balanced in the nexus between the past and the future, and direct 
myself towards the future. (Relatedly, this gives me an internal sense of the 
direction of causation).

The structure of our immersed, centered temporal and spatial expe-
rience also includes another element, a more esoteric sense of who I am. 
I know I am here, I know I am here now, but I also know that I am me. 
When I anticipate, I am thinking of my future. When I remember, I recall 
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my past. And the same is true for you. If you lose your memories, there is an 
important sense in which you no longer know who you are. If you had an 
accident where you lost your memories, you’d be disoriented with respect 
to who you are. And this is temporal and causal: you need to know that 
your experienced memories are representations of past experiences that 
played a role in creating who you are now.

Also note that, to recalibrate your sense of who you are, it isn’t just a mat-
ter of thinking of past experiences. You need to recognize these thoughts as 
your memories. If you had the memories but somehow didn’t recognize that 
the first personal experiences you are recalling are your experiences (perhaps 
you thought they were false experiences, or experiences of someone else’s 
first personal perspective), you would not recover your sense of self.

So the point here is that an immersed first personal representational 
sense of one’s own memories are essential elements of the centered con-
scious experiencer (the first personal self) (Paul, 2014b). At least one crucial 
way I know that I am me, and how I define who I am, is that I grasp my 
memories (as my memories). I sync and update my current experiences as 
causal outgrowths of my past experiences, and I recognize my memories 
as my past experiences. 

Similarly for the temporal character of anticipation: I have to know 
what counts as a memory versus what counts as an anticipation. I must 
distinguish my past selves from my future selves, and recognize my future 
selves as future. 

Very briefly: this can be important for rational deliberation and action, 
and it comes up in the discussion of transformative experience and deci-
sion. In the case with the congenitally blind saxophonist, the trouble is that 
he cannot, in the ordinary way, project himself forward into the shoes of his 
possible future self. What he wants to be able to do is consider future ways 
he could live, or future ways he could be, as a sighted individual. But in an 
essential sense he can’t mentally project or evolve himself forward from his 
immersed perspective. He has to become sighted to know what it will be 
like to be sighted. Before the operation, he faces an epistemic wall that he 
can only get past by having the experience itself. The further implication 
is that this epistemic change, becoming sighted, will scale up into a change 
in who he is. The addition of sight fundamentally alters the structure of his 
immersed experience, and by extension alters the nature of his centered, 
conscious, experiencing self.

The point generalizes, especially because there are many other new 
kinds of experiences that can transform you, such as going to war, be-
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coming a parent, or experiencing massive technological transformation. A 
profound epistemic change in the nature of an experiencer’s first personal 
perspective can lead to a restructuring of his values or preferences, and 
thus can change, in a deep way, who he is. This again connects to AI, for 
the building blocks of AI include a conception of what a self is, how it is 
structured by its values, and how it makes decisions and updates itself in 
response to the external world (See Paul 2014a for further discussion).

3. Modality 
What are some other features of the self? We can tease further elements 

out with more examples. What happens when you wake up from an in-
tense dream, in an unfamiliar room? You are disoriented until you recall 
where you are and why you are there. Your immersed qualitative experi-
ence distinguishes between different realities, distinguishing what it takes 
to be real versus what it sees as merely the experience of the dream. The 
immersed self, then, wants to distinguish between the real world and other 
worlds, and needs to know what’s real to know which features of its expe-
rience are part of who it is.

Now we’ve got several distinctive features that characterize what a self 
is: one’s spatial and temporal immersive sense of being here and now, paired 
with regular updating to external spatial and temporal cues, and a directed 
difference between the past and the future. These blend with causal ex-
perience and the sense of having one’s own memory, to give us a located, 
centered, and directed point of view that makes an implicit distinction be-
tween what’s real and what’s not. In addition, the updating and monitoring 
of location and other elements of my centered conscious experience seem 
to be an internal way of tracking and modeling myself, and in this way 
knowing myself: as I think of it, it forms part of my intuitive self. I use it to 
control, create, and know who I am.

It also defines a boundary between who I am and the rest of the world. 
(In the following sense: when I’m mentally coordinating my immersed 
perspective with external cues, I’m defining myself in juxtaposition to the 
rest of the world. Finding myself on a map, coordinating my sense of time’s 
passing with the movement of the hands of the clock, and distinguishing 
reality from the dream world all help me know where I end and the rest 
of the world begins).

There are surely additional features of the self to explore. One import-
ant feature of the centered conscious self involves the nature and character 
of its experienced sensory information. Another very important one in-
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volves the self ’s relations to other people. Once we have the basic structure 
of a focused and centered first personal perspective in place, I’m inclined 
to think that another constituent of what a fully realized self is involves its 
relations to other people and things. It may be that a distinctive element of 
the self ’s relations to other selves is its representation of those other selves 
as selves or as conscious beings. 

Now that we have all this in play, I’d like to go back to the virtual reality 
example. The case of the virtual Alps, where you stumble over a concrete 
block, is a case where you are disoriented because your immersed repre-
sentation of the world, a virtual world defined by your visual immersion, 
has been disrupted. 

You know where you are in the virtual reality, but you also need to 
know where you are in the external reality of the room. The concrete 
block disrupted your orientation in your visual (virtual) reality. To re-ori-
ent yourself, and to avoid tripping over the concrete block again, you have 
to recalibrate and coordinate your immersed visual perspective of your 
virtual reality with your tactile perspective on your external reality. 

The example brings out how immersed experience in a kind of reality 
is a feature of the centered conscious experiencer: in the virtual Alps case, 
we can contrast your immersed visual experience of the virtual world with 
your immersed tactile experience of the external or real world. A VR user 
might even need to exploit her understanding of the contrasting modal-
ities (virtual and real) for problem solving: imagine she has to find her 
way around a virtual boulder in her Alpine VR experience, but to do this 
she has to open a closed door in the external reality of the room she is in. 
Opening the door will move her around the virtual boulder. 

What is the mind doing when it solves the task of the virtual boulder 
and closed door?

To successfully perform this task, she needs to clearly distinguish the two 
modalities she is working in: virtual and external, and she needs to coordi-
nate between her visual VR’s spatially, temporally, causally, immersed point 
of view and her tactile external spatially, temporally, causally, immersed 
point of view. Finally she must manage the interpretation between them. 

This brings out how a centered understanding of the features of an 
agent’s point of view can frame her actions and define her problem solving. 
Let’s make the story a tiny bit more complicated: imagine that the virtual 
boulder has to be pushed aside with the help of other VR users, and the 
door is too heavy to be opened without their help as well. Together, you 
have to move the boulder by opening the door. You are the team leader. 
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What is your mind doing when you solve this joint action problem? 
Here, part of what you need to solve the action puzzle is to clearly dis-

tinguish and represent the first personal features of your virtual and exter-
nal realities, as well as represent the different virtual and external perspec-
tives of others, and then coordinate between their represented modalities 
and your own modalities. 

Again, computer gameplay has an analogue: in a multiplayer game 
where you can see the points of view of your teammates, you have your 
own first personal view in addition to the first personal views of others embed-
ded into your screen. The structure of joint action can also be applied to 
cases where you are negotiating with or understanding yourself at different 
times: your self at a past time, at a future time, or even at a merely possible 
time (a merely possible location or situation) can be treated like another 
agent with its own first personal view. If so, the complicated virtual reality 
joint action case isn’t just for acting and making decisions with other peo-
ple. We do something similar when we are making decisions for our future 
selves or our merely possible selves. That is, we sometimes need to be able 
to represent and understand the points of view of our future selves, our past 
selves, and our merely possible selves in order to act rationally. The exam-
ple of transformative experience I discussed above, where the saxophonist 
must rationally assess his possible future self, is another example. These are 
just some of the ways in which understanding the self connects deep phil-
osophical issues to exciting questions in artificial intelligence. 
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Statement on Artificial Intelligence

On November 30th and December 1st 2016, the Pontifical Academy of 
Sciences hosted an international symposium on Power and Limits of Artificial 
Intelligence.

In the past decade, computer science, robotics, and artificial intelligence 
(AI) have made remarkable progress. Those technologies hold great prom-
ise to address some of our most intractable social, economic and envi-
ronmental problems, but they are also part of a long-term trend towards 
automatization, with consequences that may ultimately challenge the place 
of humans in society. This committee therefore reviewed the current trends 
of AI research, its potential utility and dangers, and formulated a number 
of recommendations.

Current trends
Major research is underway in areas that define us as humans, such as 

language, symbol processing, one-shot learning, self-evaluation, confidence 
judgment, program induction, conceiving goals, and integrating existing 
modules into an overarching, multi-purpose intelligent architecture. While 
progress is impressive, no evidence suggests the imminent emergence of a 
runaway intelligence with a will of its own. Artificial intelligence remains 
far from human and lacks an overarching mathematical framework.

Benefits
Used as a toolkit, AI has the potential to advance every area of science 

and society. It may help us overcome our cognitive limitations and solve 
complex problems such as energy management and ecology, where vast 
amounts of data present a challenge to human understanding. In combi-
nation with robotics and brain-computer interfaces, it may bring unique 
advances in medicine and care. By elucidating how we learn, it may bring 
dramatic changes in education. It may also help scientists shed light on the 
nature of intelligence, the organization of the universe, and our place in it.

Dangers
Unless channeled for public benefit, AI will soon raise important con-

cerns for the economy and the stability of society. We are living in a drastic 
transition period where millions of jobs are being lost to computerized 
devices, with a resulting increase in income disparity and knowledge gaps. 
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With AI in the hands of companies, the revenues of intelligence may no 
longer be redistributed equitably. With AI in the military, we may witness a 
new and costly arm race. While intelligent assistants may benefit adults and 
children alike, they also carry risks because their impact on the developing 
brain is unknown, and because people may lose motivation in areas where 
AI is superior.

Recommendations
The effort to develop intelligent machines must remain continuous-

ly directed to the greater good, reducing the poverty gap and addressing 
general needs for health, education, happiness and sustainability. All gov-
ernments should be alerted that a major industrial revolution is underway 
and must take new measures to manage it. Scientists and engineers, as the 
designers of AI devices, bear a primary responsibility in actively trying to 
ensure that their technologies are safe and used for good purposes. We 
welcome the initiatives of some companies to create in-house ethical and 
safety boards, and to join non-profit organizations that aim to establish best 
practices and standards for the beneficial deployment of AI. We also call for 
external civil boards to perform recurrent and transparent evaluation of all 
technologies including the military. The value functions that AI is asked to 
optimize require special attention, as they may have unexpected biases or 
inhuman consequences. Just like crash tests for transportation, the passing 
of ethical and safety tests, evaluating for instance social impact or racial 
prejudice, could become a prerequisite to the release of AI software.
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Declaración sobre inteligencia artificial

La Pontificia Academia de Ciencias celebró un simposio internacional 
del 30 de noviembre al primero de diciembre 2016 sobre Poder y límites de 
la inteligencia artificial.

En la década pasada, la ciencia de la computación, la robótica y la inte-
ligencia artificial (IA) han realizado progresos considerables. Estas tecno-
logías son promisorias para encarar algunos de nuestros problemas sociales, 
económicos y medio-ambientales más acuciantes, pero también forman 
parte de una automatización a largo plazo cuyas consecuencias podrían 
comprometer el lugar que ocupa el ser humano en la sociedad. En conse-
cuencia, nuestro comité pasó revista a las tendencias actuales de la inves-
tigación en IA, su utilidad potencial y sus peligros y formuló una serie de 
recomendaciones.

Tendencias actuales
Está en curso una considerable investigación en áreas que nos definen 

en tanto seres humanos como el lenguaje, el procesamiento de símbolos, 
el aprendizaje inmediato, la auto-evaluación, el juicio certero, la inducción 
de programas, proponer objetivos e integrar los módulos existentes en un 
arquitectura abarcativa y multipropósito. Aunque el progreso es impresio-
nante no existe evidencia alguna sobre la emergencia inminente de una 
inteligencia descontrolada con una voluntad propia. La inteligencia arti-
ficial está muy lejos de la inteligencia humana y carece de un encuadre 
matemático abarcativo.

Beneficios
Cuando la IA se usa como instrumento tiene capacidad de hacer pro-

gresar todas las áreas de la ciencia y de la sociedad. Nos puede ayudar a 
superar nuestras limitaciones cognitivas y a resolver problemas complejos 
como la gestión de la energía y de la ecología, donde la enorme cantidad 
de datos representa un desafío para la comprensión humana. En combi-
nación con la robótica y con interfaces cerebro-computadora podrá pro-
vocar avances considerables en medicina y en asistencia. Al elucidar cómo 
aprendemos podrá aportar cambios radicales en educación. También podrá 
ayudar a los científicos a comprender la naturaleza de la inteligencia, la 
organización del universo y nuestro lugar en él.
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Peligros
Si la IA no se canaliza hacia el beneficio público traerá pronto proble-

mas importantes para la economía y la sociedad. Estamos viviendo un drás-
tico período de transición donde millones de trabajos se están perdiendo 
por causa de los equipos computarizados, lo que provoca un crecimiento 
en la disparidad de ingresos y en la brecha de conocimientos. Con el uso 
de la IA en las fuerzas armadas, podríamos asistir a una nueva y costosa 
carrera armamentística. Si bien la asistencia inteligente puede beneficiar 
tanto a adultos como a niños también ello puede ser riesgoso puesto que 
su impacto en el desarrollo cerebral no se conoce y podría hacer que las 
personas perdieran motivación en las áreas donde la IA es superior.

Recomendaciones
El esfuerzo para desarrollar máquinas inteligentes debe estar dirigido 

constantemente al bien mayor, reduciendo la brecha de pobreza y tratando 
las necesidades generales de salud, educación, felicidad y sustentabilidad. Se 
debe alertar a todos los gobiernos que estamos ante una revolución de gran 
magnitud y que debemos tomar nuevas medidas para gestionarla. Los cien-
tíficos e ingenieros, en tanto diseñadores tienen una responsabilidad fun-
damental en asegurar que sus tecnologías sean seguras y se usen con bue-
nos propósitos. Son bienvenidas las iniciativas de algunas compañías para 
crear comisiones de ética y de seguridad y para asociarse a organizaciones 
sin fines de lucro con el fin de establecer las mejores prácticas y medidas 
en la implementación beneficiosa de la IA. También recomendamos que 
comisiones civiles externas realicen evaluaciones periódicas de todas las 
tecnologías, incluyendo las militares. Se requiere prestar especial atención a 
aquellas funciones con valores que la IA debe optimizar en tanto pudiesen 
dar lugar a desviaciones inesperadas o a consecuencias inhumanas. De la 
misma forma que se realizan pruebas de colisiones en el transporte se de-
ben aprobar pruebas éticas y de seguridad para evaluar el impacto social o 
el prejuicio racial como prerrequisitos para lanzar un software de IA.
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