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Complexity as Substrate 
for Neuronal Computations

WOLF SINGER*

Abstract
Recent discoveries on the organization of the cortical connectome to-

gether with novel data on the dynamics of neuronal interactions require an
extension of classical concepts on information processing in the cerebral
cortex. These new insights justify considering the brain as a complex, self-
organized system with non-linear dynamics in which principles of distrib-
uted, parallel processing coexist with serial operations within highly
interconnected networks. The observed dynamics suggest that cortical net-
works are capable of providing an extremely high dimensional state space
in which a large amount of evolutionary and ontogenetically acquired in-
formation can coexist and be accessible to rapid parallel search.

The question that I would like to address is, whether evolutionary in-
creases in the complexity of the cerebral cortex led to the implementation
of unconventional computational strategies that have not yet been investi-
gated much in the brain nor implemented in technical systems. 

The evolutionary increase in the brain’s complexity has led to the emer-
gence of ever more efficient cognitive and executive functions. While neu-
robiological investigations have been very successful in elucidating the
neuronal mechanisms underlying the behaviour of simple organisms such
as molluscs, worms and insects, the search for mechanistic explanations of
higher cognitive and executive functions, in particular of the human brain,
remains a major challenge.

One conundrum is related to the evidence that memories can be accessed
nearly equally fast, within fractions of a second sometimes, irrespective of
whether they are recent or whether they are from early childhood. This im-
plies that the huge number of memories that have been acquired over a life-
time must be stored in a way that permits equal and fast access. Thus, a space
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must be configured in which all these memories can be superimposed and
accessed in parallel. A serial search process as it is realized in digital computer
memories is not conceivable because neuronal processes are orders of mag-
nitude slower than electronic computations. Serial search strategies in neu-
ronal systems would consequently be orders of magnitude too slow. 

A related conundrum is the fast readout of priors that need to be called
upon for the interpretation of sensory signals. There is consensus that per-
ceptions are the result of a reconstructive process. The sparse signals provided
by the sense organs can only be disambiguated and interpreted because they
are compared with models of the world that are stored in the functional ar-
chitecture of the brain. This architecture is specified by essentially three
processes: Evolutionary selection, epigenetic modification by experience de-
pendent developmental processes, and normal learning. All three processes
store knowledge about the features of the embedding world, so called priors,
in the brain and this knowledge is subsequently used for the construction
of our perceptions. Primates change the direction of their gaze on average
four times in a second. This implies that new information needs to be
matched with the corresponding priors approximately every 250 ms, the
time it takes to interpret a visual scene. How the nervous system is able to
retrieve the relevant priors from the immense reservoir of priors within such
short intervals is enigmatic. Again, a very large space needs to be configured
in order to store these priors and a search mechanism has to be implemented
that is capable of retrieving any of these priors with equal probability. 

Our ability to explore the huge database of stored knowledge in a sur-
prisingly short time is also revealed by the fact that we immediately know
if something is known or unknown to us.

Classical theories on information processing in neuronal networks fall
short of explaining how the immense amount of memories and priors can
be stored without fusing and retrieved with remarkable speed and accuracy.
Here I shall propose a computational strategy that has so far not received
much attention by neuroscientists, which goes back to recent theoretical work
in the field of non linear dynamics and capitalizes on the extremely rich dy-
namics of recurrently coupled complex networks. The idea is that such net-
works are capable of providing a very high dimensional state space that allows
the superimposition of an equally large number of dynamic patterns that can
be kept separate because of the high dimensionality of the available space.

Options to create high dimensional coding space
Artificial neuronal networks of the Hopfield type are in principle capable

of simultaneously representing different objects, i.e. constructs defined by spe-
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cific constellations of features and the relations among those features. How-
ever, such systems cannot cope easily with the representation of large numbers
of superimposed relational constructs, in particular if temporal relations also
need to be stored. One reason is their restricted temporal dynamics that limits
the dimensionality of states (Hopfield & Tank 1991; Rumelhart & McClel-
land 1986). Another, more recently developed class of models capable of deal-
ing with relational constructs and providing high dimensional spaces for
coding is derived from concepts of reservoir computing, also addressed as
echo-state or liquid computing. These networks consist of self-active non-
linear units with random recurrent coupling that maintain their own dynam-
ics and are engaged in active processing (Buesing et al. 2011; Buonomano &
Maass 2009; Jaeger 2001; Maass et al. 2002; Lukoševičius & Jaeger 2009).

In this computational framework, the reservoir consists of a network of
self-active, randomly coupled neurons (nodes). If a specific input constella-
tion is driving a subset of these nodes, a complex, transient, high dimen-
sional and stimulus specific activity pattern emerges in this recurrently
coupled network, the “liquid”, and is then further propagated by waves of
recurrent interactions among neurons. Such reverberation provides the “liq-
uid” with a fading memory of recent inputs that allows it to integrate input
sequences (e.g. several frames of visual input) while keeping track of se-
quence order. The readout of the relational code is achieved with conven-
tional machine learning strategies for the classification of high dimensional
vectors of activity.This readout function can again be implemented by neu-
ron-like elements, that sample activity from the nodes in the “liquid” and
adjust the coupling strength of the sampling lines through supervised learn-
ing until they become optimally activated by a particular state of the “liq-
uid” (Nikolic et al. 2009). However, the readout stage could also consist of
cell assemblies that are in turn ignited by specific states of the “liquid” after
appropriate adjustment of the synaptic weights of the connections between
the liquid and the readout stage. This strategy increases the robustness of
decoding and at the same time generates low dimensional readout patterns
that can directly be used to control effectors, e.g. orchestrate the population
vector for a composite movement. The principle of this computing strategy
is simple and powerful: a low dimensional input configuration is trans-
formed into a high dimensional dynamic representation. In this high di-
mensional state space stimulus evoked vectors remain compact, cluster in
well segregated subspaces and can be more easily discriminated based on
their spatiotemporal signatures. The segregation of clusters can be improved
further, if the network is endowed with Hebbian synapses and given the
opportunity to “learn” in an unsupervised fashion about the features of the
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stimulus sample by repeated presentation of the stimuli (Lazar et al. 2009).
As a matter of principle the performance of the liquid increases with the
dimensionality of the space it is able to explore. Thus, if the nodes are con-
figured as oscillators (e.g. relaxation oscillators or damped harmonic oscil-
lators), phase comes into play in addition, which allows for a further
expansion of the dimensionality of the “liquid” (see also Wang et al. 2011).
Because of their high dimensionality, such “liquids” are in principle capable
of storing and superimposing very large numbers of “memories” and
learned associations that can be accessed and readout nearly instantaneously.
The astounding ability of our brains to solve with such ease problems that
are still computationally intractable, such as e.g. the fast processing of com-
plex scenes, suggests that the brain might indeed capitalizes on computa-
tional algorithms which permit parallel storage and fast readout of complex
relational constructs.

Analysis of the anatomy and the dynamics of the cerebral cortex suggests
indeed that some of the above mentioned strategies might be implemented
(for review see Deco & Jirsa 2012). 

Developmental studies indicate that the statistics of feature conjunctions
in the outer world get translated into the strength of coupling between cells
tuned to the respective features. Early evidence for such internalization of
contingencies has been obtained in kittens, which had exclusive experience
with vertically oriented, unidirectionally moving gratings that had a constant
stripe separation of 10 degrees visual angle (Singer & Tretter 1976). As ex-
pected, this selective rearing biased the numerical distribution of orientation
and direction selective neurons towards the experienced stimulus (see also
Blakemore & Cooper 1970). However, most importantly, a substantial fraction
(~30%) of the neurons in supragranular layers of area 17 developed multiple,
well-segregated receptive fields whose spacing frequently corresponded to
the spacing of the experienced stripes. Because intercolumnar connections
are shaped by experience according to a Hebbian mechanism (Löwel &
Singer 1992) the ectopic receptive fields are most likely due to selective
strengthening of intrinsic cortical connections linking those columns that
were activated synchronously by the grating. In conclusion the weight dis-
tributions of the connections among cortical neurons likely reflect not only
evolutionary adaptation to regularities but also the immensely complex sta-
tistics of the feature relations experienced throughout life (Heisz et al. 2012).
Somehow, these countless, content-specific weight distributions must coexist
in a very high dimensional space so as to remain flexibly addressable as con-
textual priors (Rabinovich et al. 2001; 2008). As discussed in the following
paragraph, the dynamics emerging from cortical networks are indeed high
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dimensional, allowing for the coexistence of a large number of potentially
realizable states (Schittler, Neves & Timme 2012).

The fingerprints of high dimensional dynamics 
The dynamics of complex systems can vary between two extremes. All

elements of the system could be active independently and exhibit stochastic
activity (high dimensionality) or, alternatively, all elements could be synchro-
nized (low dimensionality). Both extreme states have low computational po-
tential. However, under normal conditions the cerebral cortex operates in an
intermediate regime where the emergent dynamics are complex and com-
putational power is high (see below). Interestingly, this is also true for the ar-
chitecture of the anatomical connections. The connectivity graph constitutes
a compromise between randomness and regularity where complexity and di-
mensionality are high (Sporns & Tononi 2002; Tononi et al. 1998).

Analysis of the resting state dynamics of cortical networks suggests that
they operate close to a self-organized critical (SOC) state (Deco & Jirsa
2012; Linkenkaer-Hansen et al. 2001; Plenz & Thiagarajan 2007; Priesemann
et al. 2013; Wang et al. 2011). The SOC state provides favourable conditions
for computations: Its memory capacity is maximal (Bertschinger &
Natschläger 2004), the information transfer is most reliable (Shew et al.
2009; 2011), it can optimally separate between different inputs (Bertschinger
& Natschläger 2004), and it shows the largest dynamical range (Shew et al.
2009; Kinouchi & Copelli 2006). 

Predictions
If mechanisms posited by the hypothesis formulated above are exploited

by the cortex, one can make the following predictions: i) Internal models
of the world are stored in the architecture and weights of neuronal con-
nections. ii) The highly complex dynamics that evolve on the backbone of
this architecture provide the high dimensional space for the accommodation
of an immense repertoire of potential states (memories, priors). iii) The
complex spatio-temporal patterns of cortical activity reflect the superposi-
tion and coexistence of latent prior distributions, both inborn and acquired.
iv) In response to input signals the initially unconstrained, high dimensional
internal network dynamics (the internal model) rapidly assume metastable
subregions of the state-space. v) These selected substates are distinguished
by enhanced coherence (synchrony, covariance) of neuronal responses and
constitute the solution of the search process. Hence the transition of the
system towards a stabilized substate should be associated with a reduction
in dimensionality. vi) The increased coherence of selected substates should
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promote their long term stabilization by Hebbian modifications of recurrent
connections and this, in turn, should facilitate retrieval of familiar substates
in future matching operations and their recruitment by down stream
processes. vii) Robustly consolidated substates should be manifest in resting
state activity and be detectable as replayed vectors or manifolds. viii) Simple
stimuli drive the network in one of its normal modes and thus into states
with low dimensional correlation structure while complex stimuli (natural
scenes) evoke numerous normal modes simultaneously that superimpose
and lead to high dimensional states. ix) Cortical networks should operate
in a dynamic range close to Self Organized Criticality (SOC) because the
intermediate level of existing correlations and the long correlation distance
in SOC states facilitate the rapid relaxation of a dissipative system into co-
herent substates. 

As reviewed recently (Singer 2013), some of these predictions are sup-
ported by data. Developmental studies indicate that the statistics of feature
conjunctions in the outer world are translated into cortical connectivity
according to a Hebbian mechanism (for review, Singer 1995). The
anisotropy of this connectivity is reflected by the correlation structure of
resting activity (Fries et al. 2001a), and the latter can be modified by learning
(Lewis et al. 2009). Ample evidence is also available for the propensity of
cortical circuits to engage in oscillatory activity in a wide range of frequen-
cies and for stimulus dependent changes of correlation structure mediated
by intracortical connections. Both features are hallmarks of recurrently cou-
pled networks (for reviews see Singer 1999; Buzsáki et al. 2013). The fact
that both sensory stimulation (Gray et al. 1989; Churchland et al. 2010) and
top down signals related to attention (Fries et al. 2001b; Lima et al. 2011)
enhance synchronized oscillatory activity in distinct frequency bands is
compatible with processes of dimensionality reduction. There are also in-
dications that cortex operates in a SOC state (Linkenkaer-Hansen et al.
2001; Plenz & Thiagarajan 2007; Wang et al. 2011). Finally, in a recent elec-
trophysiological study (Nikolic et al. 2009) in the visual cortex of anes-
thetized cats we were able to demonstrate features characteristic of reservoir
computing. We found that i) stimulus identity can be determined by a linear
classifier fed with the responses of 60 randomly selected simultaneously
recorded neurons, suggesting that information about stimuli is distributed,
ii) stimulus-specific information persists up to a second, which supports the
existence of fading memory, and iii) information about the nature and se-
quence of stimuli is retrievable for at least two successively presented stimuli,
suggesting superposition of representations. Most importantly, in these pilot
experiments we have obtained indications (unpublished) for unsupervised
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learning and replay of stimulus specific vectors in spontaneous activity. Clas-
sification improved for frequently presented stimuli because their response
vectors became increasingly different and these vectors occurred sponta-
neously in resting states. Thus, in contrast to liquid state machines, where
plasticity is neglected, real neuronal networks exhibit experience dependent
long term modifications of their state. 

Conclusions
In conclusion, I believe that theoretical arguments and available exper-

imental results now provide sufficient ground to support the hypothesis
that neocortex exploits the fantastic computational capabilities offered by
complex systems with high dimensional, non linear dynamics in order to i)
superimpose information about relational constructs and sequences, ii) per-
form computations for matching, pattern completion and invariance ex-
traction, and iii) obtain fast results by relaxation into metastable substates of
lower dimension, thereby simplifying classification and enhancing stability. 

Thus, it appears as if nature had found a way to realize extremely pow-
erful computational strategies by increasing the complexity of neuronal dy-
namics. The anatomical substrate for this increase in complexity is the
cerebral cortex, the most recent invention of evolution. The prevailing prin-
ciple appears to be dense reciprocal coupling among large numbers of
nodes, whereby the nodes already possess highly diverse and non-linear dy-
namic properties and the connections differ in conduction time and cou-
pling strength. These features generate a maximum of diversity and because
of the high degree of non-linearity of the emerging dynamics, such net-
works provide an extremely high dimensional space for the storage and
processing of information. 

As is evident from comparisons with artificial intelligent systems, the
computational abilities and the energy efficiency of cortical computations
exceed by far those of man made systems. If the hypotheses formulated above
should turn out to be correct, this is bound to have a strong impact on both
neuroscience and artificial intelligence. In neurosciences, it will encourage
the incipient paradigm shift from behaviourist stimulus-response concepts
towards notions of predictive coding in self-organizing recurrent networks
with high dimensional dynamics. It will also provide a new framework for
the interpretation of pathological cognitive and executive functions and their
experimental analysis, as there is first evidence that diseases such as schizo-
phrenia and autism are associated with abnormal brain dynamics (Uhlhaas
& Singer 2012). In the computational sciences it will further encourage and
perhaps even instruct the already intense search for novel, biomorphic or
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brain inspired computer architectures. Finally, at the epistemic level, it would
provide a first hint that evolution, by exploiting complex dynamics, has found
a way to realize in a classical system functional aspects like fast parallel search
and computation that so far were thought to be realizable only with quan-
tum computers. The analogy with processes known to exist in the quantum
world such as the coexistence of a large number of potentialities by the su-
perposition of wave functions and the fast realization of one of these poten-
tialities by the collapse of the wave function is fascinating. As quantum
processes cannot play a role at the macroscopic scale at which neuronal net-
work computations occur, this similarity suggests that increases of complexity
of classical systems can lead to the emergence of qualities that bear a certain
resemblance with features of the quantum world. Thus, the boundaries be-
tween the quantum world and the macroscopic world may turn out to be
not as sharp as generally assumed.
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