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Analogy, Identity, Equivalence
MICHAEL HELLER *

Abstract
Category theory, possibly more than any other mathematical theory, has

a rich philosophical significance. The reason why it has not been so far ex-
ploited by philosophers is that they know it, if at all, only superficially. In
the present essay, I shall explore only one aspect of this theory, namely the
way it contributes to our understanding of such concepts as: analogy, iden-
tity, equivalence. It goes without saying that these concepts play a paramount
role not only in many scientific disciplines, but also in philosophy of science
and in some fundamental ontological questions. They are notoriously dif-
ficult to be defined, and most often are used intuitively or only with the
help of purely verbal clarifications. Within the category theory their mea-
ning can be rigorously determined, and their definitions are not arbitrary
but imposed, so to speak, by the mathematical context. And even more im-
portantly, these definitions often reveal the variety of meanings never su-
spected outside the categorical context - the meanings that can doubtlessly
be adapted to enrich many traditional philosophical discussions.

1. Introduction
In 1945 Samuel Eilenberg and Sounders Mac Lane published a lengthy

paper entitled “General Theory of Natural Equivalences”[9] in which they
introduced the concept of category. Many years later Mac Lane confessed
that in this paper “they had written what they thought would perhaps be
the only necessary research paper on categories” [14, p. 345]. Today every
textbook on the category theory quotes this paper as the one that gave
birth to one of the most comprehensive mathematical theories.

Category theory, possibly more than any other mathematical theory, has
rich philosophical significance. The reason why it has not been so far ex-
ploited by philosophers is that they know it, if at all, only superficially. In
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the present essay, I shall explore only one aspect of this theory, namely the
way it can contribute to our understanding of such concepts as: analogy,
identity, equivalence and the like. It goes without saying that these concepts
play a paramount role not only in many scientific disciplines, but also in
philosophy of science and some fundamental ontological questions. They
are notoriously difficult to be defined, and most often are used intuitively
or with the help of purely verbal clarifications. One of my motivations to
embark on this study was the reading of an essay by R. Brown and R. Porter
under the telling title “Category Theory: an Abstract Setting for Analogy
and Comparison” [6]. Although my argument goes along slightly different
lines, to quote almost literally the abstract of this essay could be the best
summary of my aims. “Comparison and analogy are fundamental aspects of
knowledge acquisition. One of the reasons for the usefulness and impor-
tance of the category theory is that it gives an abstract mathematical setting
for analogy and comparison, allowing an analysis of the process of abstrac-
ting and relating new concepts. This setting is one of the most important
routes for the application of mathematics to scientific problems”.

My argument runs as follows. In section 2, I introduce categories and
functors in the context of philosophical controversy between objectivist
and relativist positions. In section 3, I present natural transformations and
adjoint functors. In section 4, I discuss the concept of equivalence, and com-
pare set-theoretic and categorical ontologies. And finally, in section 5, I col-
lect conclusions related to the concept of analogy.

2. Categorical Structuralism
In the philosophy of mathematics there is a long lasting controversy bet-

ween those who claim that the primary mathematical entities are objects
and those who support the view that the primary mathematical entities are
structures (roughly speaking, networks of relations) and objects are but “pla-
ces” within structures (see, for instance [22]). In physics this controversy as-
sumes the form of the question: are space and time collections of object-like
points or instances (Newton’s view on the absolute space and time), or or-
dering relations between events (Leibniz’s view on the relational nature of
space and time) (see, for instance [8])? These polemics are but an echo of
what is discussed in metaphysics since Aristotle or even presocratics: are fun-
damental bricks of reality substances or should the world be regarded as a
network of relations? The strength of mathematics consists in its idealization
of our intuitive concepts and converts them into formal theories which, in
turn, sharpen our understanding of the world. The category theory does this
with respect to objectivist versus relational controversies.
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A category is a system consisting of:

• Objects: A, B, C, ...

• Morphisms (also called arrows): f, g, h,... between objects, for instance

f : A→ B,

A is called domain of f and B is called codomain of f .

• Morphisms can be composed, e.g. if f : A→ B and g : B→ C then

g ◦ f : A→ B.

• The composition is associative, i.e. for all f : A→ B, g : B→ C, h :
C→ D,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f.

• For each object A there is a morphism 1A : A � A, called identity 
morphism of A, such that

f  ◦ 1A = f = 1B ◦ f

for all f : A→ B.

For instance, sets as objects and functions between sets as morpisms form a
category, but in general objects need not be sets and morphisms need not
be functions.1

If in the afore mentioned philosophical discussions we substitute “mor-
phisms” for “relations”, we can draw preliminary conclusions important for
these discussions. For instance, if we do so with respect to the question: “can
objects be entirely eliminated and replaced by a network of relations?”, we
get a clearly formulated program to be considered in the category theory,
namely, can we get rid of objects in the category definition? The result of
such an attempt is the so-called objectless category theory [21, pp. 44-46].
The only primitive concept in it is that of morphism, and the axioms assure
the composition of morphisms and the existence of the identity morphisms.
However, the elimination of morphisms is here only apparent since in fact
there is a one to one correspondence between identity morphisms and ob-

1 For the full definition and more examples see, for instance, [2, chapter 1].
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jects, and without identity morphisms categories cannot be defined. But
the conclusion that objects are on equal footing with morphisms would
also be premature. It turns out that all relevant information on an object
can be recovered by considering all morphisms (arrows) ingoing to and
outgoing from a given object [15, p. 47]. This recalls Leibniz’s idea of mo-
nads “which are windowless (we would say they have no internal structure),
and the only things that matter are their mutual relationships” [7].

Here we should be warned that in this context the term “relation” is
too set-theoretic and too laden with philosophical connotations to correctly
render the message coming from the category theory.Traditional relational
structuralism is a bottom-up structuralism in which “every relation had to
be a relation on some things which, even if they were themselves analyzable
into relations, had to be among some other things, ... , and either this process
had to stop somewhere (atoms), or an account had to be given of infinite
analysis” [3, p. 61]. The categorical structuralism, on the other hand, can be
called top-down structuralism. As it is expressed by Awodey, “If we take in-
stead the perfectly autonomous notion of a morphism in a category, we can
build structures out of them to our heart’s content, without ever having to
ask what might be in them” (ibid.). The best solution would be to regard
categories themselves as “building blocks” of the categorical structuralism,2

that is to say to regard them as “objects of a higher order”, and look for
suitable “morphisms” between them. Such a “morphism” is called functor
and is one of the corner stone concepts of the category theory.

A functor from a category C to a category D transforms the objects of
C into objects of D, and the morphisms of C into morphisms of D in such
a way that the structure of the category C is preserved (for definition see,
e.g., [2, pp. 8-9]). The above discussion concerning the relationship between
objects and morphisms could in principle be repeated with respect to ca-
tegories as objects and functors as morphisms. It is obvious that we could
proceed further and further along subsequent steps of generalisations, and
finally we should consider what is called category of categories. It is a hot
topic in the philosophy of mathematics. It was F. William Lawvere who, in
his Ph.D thesis [12], tried to consider the category of all categories in the
context of the foundations of mathematics, but the very existence of such
a category is uncertain. I shall not immerse myself into this discussion (see,
for example [17]; this would take us aside from our main line of reasoning.

2 The discussion on a “categorical structuralism” in the philosophy of mathematics
is very much alive; see, for instance [1, 11, 18].
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I would like to argue that there are functors that reveal the nature of the
categorical structuralism.3

3. Natural and Adjoint
In this section we introduce two concepts which play the crucial role in

our further analysis; these concepts are: natural transformation and adjoint
functor.

Mathematicians often say that a structure or an operation is natural, and
usually know what they have in mind, although the concept has not been
defined so far. Eilenberg and Mac Lane in their seminal work [9] faced the
problem of formally defining the meaning of natural transformation. The
result of their effort is this. Let us consider two functors F, G : C → D (of
the same variance)4 from a category C to a category D . A natural transfor-
mation between these two functors, written as τ : C→ D, is a family of mor-
phisms in the category D, τA : FA → GA, indexed by objects A of the
category C with some rather obvious conditions supposed to be satisfied
(for the definition see, for instance, [23, pp. 90-91]).

Eilenberg and Mac Lane, in their original paper, introduced the concept
of an isomorphism of categories more or less in the standard way: A functor
F : C→ D is said to be an isomorphism if there is a functor G : D→ C such
that G ◦ F = idC and F→G = idD . A natural transformation between fun-
ctors F and G is said to be a natural isomorphism if, for each object A of
the category C, the morphism τA : FA→GA is an isomorphism in the ca-
tegory D.

The concept of an adjoint functor was introduced by Daniel Kan in
1958 in [13]. This work truly revolutionised category theory, changing it
from a convenient shorthand of some complicated constructions into one
of the most fundamental theories of modern mathematics.

Let us consider, as above, two categories C and D, and let F : C→ D and
G : D→ C be two (covariant) functors as shown below

3 It is a modification of McLarty’s “The main point of categorical thinking is to let
arrows reveal structure” [16, p. 366].

4 This means that both functors are either covariant or contravariant.

F

G

C D
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Let A, B be objects of the category C and S, T objects of the category
D. Let further HomC (A, B) denote all morphisms from the object A to the
object B in the category C, and analogously HomD(S, T ) in the category
D.We want to compare objects A and S, but they live in different categories.
Therefore, we either move S, with the help of the functor G, to the category
C to compare it with A or, equivalently, we move A, with the help of the
functor F , to the category D to compare it with S. This idea is encoded in
the following way

α : HomC (A, GS)→HomD(F A, C )

where α is supposed to be a natural isomorphism. If this is the case, F is
said to be a left adjoint of G, and G a right adjoint of F , denoted F ⊣G (for
the full definition see [23, pp. 148-151] or [2, p. 215]).

As we can see, the functor G is almost an inverse of the functor F , but
not quite an inverse [15, p. 159]. Adjoint functors were not known prior to
Kan’s work, but it has turned out that they play the fundamental role both in
the category theory itself and in the whole of mathematics. One often disco-
vers that there exist adjoint functors between categories that are “far away
from each other” so that no connection between them was so far suspected.
Such a discovery usually leads to new interesting mathematical results.

Suppose we have two structures (categories) between which there exists
a pair of adjoint functors. Then one of these structures gives rise to the
other structure, and this relationship is reciprocal. Very often, to establish
this relationship without the help of adjoint functors would require a long
chain of deductions or even would have never been identified.
Suppose we have to solve a problem related to two categories between
which there exists a pair of adjoint functors. The merit of formulating the
problem in terms of these functors is that if we get a solution, it is guaran-
teed that the solution is optimal in the strictly defined sense.

4. Set-Theoretic and Categorical Ontologies
In mathematics objects are defined “up to isomorphism”, i.e. two isomor-

phic objects are regarded as two “representations” of the same object. In other
words, it is isomorphism that gives to an object its identity. We could call this
“set-theoretic ontology”.5 It was Alexander Grothendieck who noticed that
this ontology is not suitable for categories: there are some categories that are

5The term “ontology” is used here in the sense close to that proposed by W. Quine [19].
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not isomorphic with each other that should nevertheless be regarded as “the
same” from the categorical point of view[10]. He thus proposed the following
definition. Two categories C and D are equivalent if there are functors F : C→D
and G : D → C such that idC ≌G◦F and idd ≌F ◦G are natural isomor-
phisms. The fact that, in this definition, the concept of natural isomorphism
appears, makes it natural for the category theory. If we use the equivalence in
the Grothendieck sense to equipp categories with their identity, we can speak
about a categorical ontology.

It is easy to see that two equivalent (in the Grothendieck sense) functors
F and G are adjoint, F ⊣G (but not necessarily vice versa ). As the conse-
quence, the equivalence of categories is a special case of adjointness. The-
refore, if two categories C and D are equivalent, there exists a pair of adjoint
functors F : C → D and G : D → C, but these functors need not be the in-
verses of each other, i.e. they need not define an isomorphism of categories.
If they do, the functors are trivially equivalent. Here we have a surprise: it
can happen that this deviation from triviality can lead to interesting theo-
rems.6 We can see here that the “space of categories” is not a loose agglo-
meration of categories, but rather a highly structured “field” that reacts on
“perturbations” of its substructures in a sophisticated manner.

We can go even further in comparing the “set-theoretic world” with
the “categorical world”. In the set-theoretic approach, the univers de discourse
of mathematics is the “space of all sets” (we abstract here from paradoxes of
the set-of-all-sets type); in the categorical approach the univers de discourse
of mathematics is the “space of all categories” as mentioned above (we ab-
stract here from the discussions around the category of categories). There-
fore, a single category is a point in this space. But the category of all sets as
objects and all functions between them is only a one category among many
others, that is to say, just one point in the space of categories. This shows
vastly different perspectives of both these approaches.

Could this vast multiplicity of categories be made of an immense num-
ber of families of sets and functions between them? If so, the categorical
ontology would finally be reducible to the set-theoretic ontology. This pro-
blem has been, at least in part, elucidated by some consequences following

6 Here is an example: Let C be a category the objects of which are locally compact
Abelian groups and the morphisms are continuous group homomorphisms. Let also Cop
be the category opposite to C. These two categories are equivalent (in the Grothendieck
sense), and this equivalence is nothing else but the well known Pontryagin theorem. For
more examples see [20].
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from the so-called Yoneda lemma. The following remarks should give the
reader the general idea (for details see [2, pp. 185-192]).

Let C be any locally small category.7 It can be represented by functors
from the category C op opposite8 to C to the category Sets of sets as objects
and functions as morphisms. More technically, the representation is given
by a functor, called Yoneda embedding,

y : C → SetsC op
.

It says that the category C can be identified with a subcategory of fun-
ctors from C op to Sets. In other words, any (locally small) category can be
represented in terms of a functor category. Here is a short comment given
by Marquis: “This might seem innocuous but it constitutes an extremely
important shift that has tremendous implications, both mathematically, and
philosophically, that is in the way one thinks about what mathematics is
about. For now, objects of a category are not fundamentally structured sets,
they are first and foremost functors” [15, p. 105]. Categorical ontology is a
functorial ontology. Even if the majority (at least all locally small categories)
can indeed be translated into families of sets and families of functions bet-
ween them, the categorical perspective is totality different: the space of ca-
tegories is “spanned” by functors rather than by functions, and this makes
the difference. Functors are not only much richer, but also much more fle-
xible. A lot of possibilities that are excluded in the set-theoretic ontology
in the categorical ontology are quite “ordinary”. Many of our scientific and
philosophical concepts if looked upon from this new perspective could re-
veal their unexpected aspects. This is also true as far as the concept of ana-
logy is concerned.

5. Analogies
The concept of analogy belongs to the family of those concepts that

being important for scientific or philosophical discourse, are at the same
time fuzzy and change their meaning depending on the context. In spite
of some heroic attempts, undertaken mainly by philosophers, linguists and

7 A category C is locally small if, for all its objects X, Y the collection of all morphisms
from X to Y is a set.

8 The category Cop , opposite to the category C, has the same objects as C, and the
same arrows but in the reversed direction.
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logicians,9 we use them by basing them on our intuition rather than on
some hard analyses. There is a strong connection between our intuitions
and the set-theoretic ontology. No wonder since a set-theoretical thinking
was created by formalizing and idealizing our every-day intuitions. My view
is that our intuitions, contaminated by a set-theoretic thinking, do not grasp
the full content of the concept of analogy as it reveals itself in the manifold
of its applications. To this end the category theory seems to be much better
suited. The concept of analogy seems to be, from its very nature, multi faced
and adapting its meaning to various situations. It is a dynamic concept. This
is why the categorical ontology seems to offer more effective means to deal
with the issue of analogy.

Looking at analogy in the categorical environment and with the help of
categorical tools is so promising that it would require a more profound study;
here I offer only a few hints or remarks suggesting some perspectives:

• Classically analogy is defined or described in terms of relations between
objects; categorical concept of morphism, together with its “dom
inance” over objects, enables us to disclose more shades of the notion of
analogy. For instance, the very concept of object in the categorical setting
reveals its dynamical nature: the usual question “what is object?” is re-
placed by the question “what is object doing?”.

• Even more so as far as the concept of functor is concerned. Owing to
this concept we can speak about “analogous” categories, and the category
concept is so rich that it embraces structured sets, relations, relations bet-
ween relations, abstract and concrete processes, etc., etc. One can deal
with this variety of situations not only at the intuitive level, but also in
a mathematically precise way. If we want to decide whether two things
or situations deserve the name “analogous”, we must compare them. In
the category theory we compare categories with the help of functors,
and the enormous variety of functors offers a great richness of compa-
ring methods. Since there are functors between functorial categories (i.e.
such categories the objects of which are functors), we can also explore
“analogy between analogies”. It seems that natural transformations and
adjoint functors are especially suitable to this end.

9 From the formal point of view analogy was analysed by the Polish School of Logic
(see [24]). The most known are the works of J.M. Bocheński [4, 5].
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• A natural transformation compares two functors between two categories.
The way of comparing seems complicated, but it effectively detects a
certain affinity between them. It is tempting to call this affinity of fun-
ctors, at least in some situations, analogy.

• If we agree to relate analogy to natural transformations, we must ackno-
wledge that analogy is involved, via the natural isomorphism α (section
3), into the concept of adjointness. The fact that the isomorphism α is
natural means that if we transform the object A into an object B (in the
category C ), or the object S into an object T (in the category D), the
correspondence (analogy) between the two hom-sets will be preserved.
Two adjoint functors between two categories are “almost inverse of each
other, but not quite an inverse”. If they were inverse, the two categories
would be isomorphic, and the fact that they are not, allows us to call
them analogous. As put by Brown and Porter, “the partial matching, via
a comparison, of the properties of A and B leads to analogy” [6, p.3].

I am far from thinking that with natural transformations and adjoint
functors the analogy problem in relation to category theory has been closed;
they are only examples of what could be achieved.

One more lesson from the above analysis. After all, it is not that impor-
tant how we call our concepts (analogous or not) as long as we have effec-
tive tools to compare them, and it is category theory that offers such tools.
We should only learn how to use categorical models in the service of phi-
losophical investigations. Mathematical tools are much richer than our
every-day intuitions and purely verbal distinctions; they are able to reveal
unexpected aspects of reality.
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