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SUMMARY

The structuralist view on mathematics, claiming that mathematics is
‘about structures and their morphology’, is well founded in both mathe-
matical practice and metatheoretical investigation, although it is difficult to
formulate in a rigorous manner. Assuming the structuralist view on math-
ematics, we look for its consequences for interpreting physical theories.

Empirical successes of physical theories support their realistic inter-
pretation, but discontinuities in the world image, often caused by replacing
a successful physical theory by another even more successful theory, sup-
port their anti-realistic interpretation. However, if we remember that the
mathematical structure of the old theory can be obtained, as a limiting
case, from the mathematical structure of the new theory, we recover a con-
tinuity at the level of structures (even if there is no continuity at the level of
respective world images). This supports the view that physical theories are
‘about the structure of the world’ or, more precisely, that the method of
physics grasps only the world structure. From the philosophical point of
view, two possibilities can be envisaged: either (1) structures discovered by
physical theories are structures of something, i.e., there is a ‘structured
stuff’, but this stuff is transparent for the physical method (epistemic struc-
turalism), or (2) such a stuff does not exist (ontic structuralism). To decide
between these two possibilities one should go beyond the analysis of the
physical method and appeal to metaphysical or logical reasons.

In the case, when one physical theory admits more than one mathe-
matical formulation (which is not infrequent situation in physics), we
should assume that these formulations are but various representations of
an abstract structure, and that it is this abstract structure that reflects or
approximates the Structure of the World.
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1. INTRODUCTION

The line of reasoning adopted in this paper is the following:
– Mathematics is a science of structures, i.e., the world discovered
(or constructed?) by mathematicians consists of structures and rela-
tions between structures.
– Physics employs mathematical structures to model the world.
– Therefore, the world as discovered (or constructed?) by physicists
consists of mathematical structures interpreted as structures of the
world.

As we can see, the above strategy is based on methodology: by analysing
the method of both mathematics and physics we try to gain some impor-
tant information about the world. And the information is that the world, as
discovered (or constructed) by physics, is purely structural. Only its struc-
tural aspects are visible for the mathematical-experimental method of
physics. A material stuff supporting relations, that constitute the structure,
if it exists, is transparent for this method.

This is not a new philosophy of physics. It is known for a long time that
there are interactions between physical objects rather than the objects
themselves that are accessible for the method of physics. And the word
‘interactions’ is just another name for ‘relations constituting the structure’.
However, in the last decades, this philosophy of physics was subject to a
detailed scrutiny, and became a subject-matter of a long dispute, out of
which new and illuminating arguments have emerged.

The above presented ‘line of reasoning’ determines the organization of
my material. First, I focus on the ‘mathematical structuralism’, then I dis-
cuss its use in physics to finally draw some conclusions concerning what
could be called the structuralist ontology of the world.

In pursuing this plan, I base my presentation on the above-mentioned
debate which is still going on in the foundations of mathematics and in phi-
losophy of physics.

2. STRUCTURALIST APPROACH TO MATHEMATICS

It would be difficult to find a mathematician who, for the first time,
used the word ‘structure’ to denote the subject-matter of mathematical
inquiry. Nowadays, the saying that mathematics investigates structure is a
kind of common wisdom among mathematicians. Any deeper study of
mathematics, especially of geometry, creates a persistent impression of an
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architectonic totality, the elements of which acquire their meaning only
through their relationship with other elements and the underlying plan. No
wonder that structuralist ideas had appeared long before they became a
part of an official current in the philosophy of mathematics. The concept of
structure (understood in a more technical way) invaded first the abstract
algebra, and from algebra it proliferated – mainly owing to the works of
Nicolai Bourbaki – to almost the whole of mathematics. Some structuralist
view could be traced back to the writings of Hilbert, Bernays and Quine,
but it is often Michael Resnik who is credited with initiating the ‘struc-
turalist movement’. In his paper ‘Mathematics as Science of Patterns:
Ontology and Reference’,1 considered by many as a kind of structuralist
manifesto, Resnik declared that in mathematics we are never dealing with
objects equipped with ‘inner properties’, but only with structures. The
objects, studied in mathematics, are but ‘structureless points’ or positions
within structures. Besides their place in a structure, they are devoid of any
individuality and any property independent of the structure. He wrote:

The objects of mathematics, that is, the entities which our mathe-
matical constants and quantifiers denote, are structureless points or
positions in structures. As positions in structures, they have no iden-
tity outside of a structure.2

The thesis, understood intuitively, that mathematics is a science of
structure, does not excite any emotions, but if one wants to make it more
precise, opinions start to diverge, and technical discussions replace a con-
sensus. As far as these technical aspects of the problem are concerned two
mathematical theories seem to be especially relevant: set theory and cat-
egory theory.

2.1. Mathematical Structuralism and Set Theory

The great majority of current works in mathematics is based on the
assumption that mathematics is founded on set theory. No wonder, there-
fore, that when we think on the structural approach to mathematics, the
first question that should be answered is whether the set theoretic defini-
tion of number (which ‘evidently’ are objects!) could be rephrased in a
structuralist manner. Paul Benacerraf, in his paper ‘What Numbers Could

1 Nous, 15 (1981), pp. 529-550.
2 Ibid., p. 530.



Not Be?’,3 addresses this question. He points out that, for instance, number
‘3’ can be identified with different set theoretic objects (e.g. with {{{0}}} in
agreement with Zermelo’s approach or with {0, {0}, {0}} in agreement with
von Neumann’s approach), and any such ‘object’ can serve as a representa-
tive of number ‘3’ provided it satisfies certain structural relations. The
mathematician’s interest does not go beyond structural properties. It is
impossible to identify an ‘object’ independently of the role it plays in the
structure. Referring to this view, Charles Parsons4 speaks about the elimi-
native structuralism: all utterances on objects should be understood as
utterances on structures, and one should look for mathematical procedures
that would allow one to eliminate from the discourse all mention on objects
by substituting for them structural terms.

Structuralist approach to the philosophy of mathematics is often iden-
tified with the Platonist approach. In fact, Resnik, in his seminal paper,
claimed that it is the structuralist approach that puts the Platonist philoso-
phy on the firm ground. In his view, the belief in objects is incompatible
with the Platonist philosophy since ‘no mathematical theory can do more
than determine its objects up to isomorphism’, and

[t]he Platonist seems to be in the paradoxical position of claiming
that a given mathematical theory is about certain things and yet [he
is] unable to make any definitive statement of what these things are.5

However, this link between structuralism and Platonism was ques-
tioned by Steward Shapiro.6 He argues that since ‘mathematics applies to
reality through the discovery of mathematical structures underlying the
non-mathematical universe’, the latter is ontologically prior with respect to
mathematical structures. Although Shapiro’s views are open to a criticism,7

it is important to realize that mathematical structuralism is not to be iden-
tified with mathematical Platonism.

The strict definition of structure can be found in abstract algebra.
Here structure is understood as a domain, possibly with some distin-
guished elements, on which some relations and functions are defined and

3 In P. Benacerraf, H. Putnam (eds.), Philosophy of Mathematics: Selected Readings, 2nd
edition (Cambridge, Cambridge University Press, 1983), pp. 272-294 (1st edition, 1965).

4 ‘The Structuralist View of Mathematical Objects’, Synthese, 84 (1990), pp. 303-306.
5 Op. cit., p. 529.
6 ‘Mathematics and Reality’, Philosophy of Science, 50 (1983), pp. 523-548.
7 See, e.g., Ch. Chihara, Constructability and Mathematical Existence (Oxford, Clarendon

Press, 1990).
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satisfy suitable axioms. Examples of such structures are: group, vector
space, module, linear algebra. However, if one wants to use this structure
definition for philosophical purposes, one immediately meets the follow-
ing difficulty: the domain entering the structure definition is a set, and
relations and functions on this domain are defined in terms of Cartesian
products of sets. It is, therefore, evident that this structure definition pre-
supposes the existence of sets, and cannot serve as a tool to replace the
‘set philosophy’ with a structural approach. Problems of this sort make
people look for a solution in category theory.

2.2. Mathematical Structuralism and Category Theory

One of the main motives to create category theory was to grasp the
essence of structure, S. Eilenberg and S. MacLane8 aimed at this topic not
for philosophical reasons but to elaborate a tool to investigate dependences
between various mathematical theories.

For precise definitions introducing the concept of category the reader
should look in the suitable mathematical literature,9 here we give only an
‘intuitive description’, sufficient to follow further analyses. By a category
one should understand:

(1) a class of objects: U, V, W, Z,...
(2) a class of morphisms: Mor (U, V) for every pair (U, V) of objects,
(3) a composition of morphisms.
Morphisms could be viewed as mappings between objects, although

neither objects have to be sets, nor morphisms have to be mappings
between sets. Of course, objects, morphisms and the operation of compo-
sition of morphisms must satisfy suitable axioms.

Common examples of categories are: category Ens with any sets as
objects, and any mapping between them as morphisms; category Top with
topological spaces as objects and continuous mappings as morphisms; cat-
egory Grwith (non-empty) group as objects, and group homomorphisms as
morphisms.

An important role in category theory is played by functors; they could
be thought of as mappings between categories that preserve some of their

8 ‘General Theory of Natural Equivalences’, Trans. Amer. Math. Soc., 58 (1945), pp. 231-294.
9 A good introductory course could be found in R. Geroch, Mathematical Physics

(Chicago-London, The University of Chicago Press, 1985).



properties. For instance, the forgetting functor goes from Gr to Ens in such
a way that it ascribes to every group the set on which the group is defined
(this functor preserves the set structure but forgets the group structure).

In category theory the stress is laid on morphisms and functors rather
than on objects. Motivated by this intuitive idea, suggestions were made that
category theory could provide new foundations for mathematics.10 It is inter-
esting to notice that objections against this view were directed not against
structuralism, but rather in defense of the thesis that it is only set theory that
could provide necessary tools to reach this goal.11 However, this claim seems
to be unjustified because of the existence of the topos category. It is a cate-
gory that unifies in itself the notion of a ‘generalized set’ with the notion of a
‘generalized space’.12 There are many topoi which can be used for various
purposes. For example, one can define a topos that does not require the law
of the excluded middle, or a topos without the axiom of choice. Among these
topoi there is one which is equivalent to the standard set theory. Because of
this elasticity the theory of topoi combines in itself properties of geometry
and logic. It is therefore evident that everything that can be achieved for the
foundations of mathematics with set theory can also be done with category
theory. Could category theory do more than set theory in creating structural-
ist foundations of mathematics? The situation in this respect is not clear.

The evolution of MacLane’s views in this respect is significant. In his
earlier work13 he expressed a more radical view, and hoped that category
theory would be able to provide strict and better foundations of mathe-
matics than those based on set theory. Later on, when these hopes had not
materialized, he had to change his standpoint. Out of the failure he made a
philosophy. Mathematics has a ‘Protean character’, in the sense that it
explains why it can have no foundations. Although category theory cannot
provide strict foundations for mathematics, it has a ‘foundational signifi-
cance’ since it organizes the whole of mathematics so that we are able to
speak about mathematical structures and structures of these structures.14

10 S. MacLane, Mathematics: Form and Function (New York, Springer, 1986).
11 J. Mayberry, ‘What is Required of a Foundations of Mathematics?’, Philosophia

Mathematica, 2 (1992), pp. 16-35.
12 For precise definitions see, for instance: S. MacLane, I. Moerdijk, Sheaves in

Geometry and Logic: A First Introduction to Topos Theory (New York, Springer, 1992).
13 Mathematics: Form and Function, op. cit.
14 S. MacLane, ‘The Protean Character of Mathematics’, The Space of Mathematics: J.

Echeverra, A. Ibarra, J. Mormann, De Gruyter (eds.), (New York, 1997), pp. 3-12.
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In this sense, ‘mathematics has as its subject-matter structures and their
morphology’.15 To express these ideas in a more strict language people start
to speak about the ‘category of all categories’. Attempts to give its precise
definition are involved in many technicalities, the discussion of which
would lead us beyond the scope of the present paper.

Finally, let us mention that there were attempts at creating a formal the-
ory of structure. For instance, Shapiro proposed a suitable axiomatic sys-
tem.16 However, since his system imitates that of a set theory, it is involved
essentially in the same interpretative difficulties.17

2.3. Tentative Conclusions

Let us collect some tentative conclusions following from the above
analysis. The structuralist interpretation of mathematics is well-founded
in both everyday mathematical practice and in metatheoretical investiga-
tions. However, it is notoriously difficult to express it in a strict but ade-
quate way. Moreover, the border-line between the ‘objectivist’ and ‘struc-
turalist’ views is rather fuzzy, and if one wanted, in some cases, to deter-
mine this border more precisely, one would have to look at what a given
mathematician is doing rather than to listen to his or her declarations.

We should distinguish the weaker and stronger versions of mathemati-
cal structuralism. Adherents of the weaker version do not negate the exis-
tence of mathematical objects but treat them as ‘places’ in a structure.
These places are either devoid of an ‘inner structure’, or their structures are
entirely determined by the structure in which they are substructures.
Adherents of the stronger version claim that either the concept of structure
does not require the existence of objects at all (ontological structuralism),
or that if objects do exist, they are not cognizable. It is clear that the latter
distinction have strong metaphysical bearing, and goes beyond the founda-
tions of mathematics.

In the following, we shall work with the assumption that mathematics
is ‘about structures and their morphology’, and look for the consequences

15 E. Landry, ‘Category Theory: The Language of Mathematics’, scistud.umkc.edn/psa
98/papers/.

16 See, S. Shapiro, Philosophy of Mathematics. Structure and Ontology (New York-
Oxford, Oxford University Press, 1997).

17 For a detailed analysis see: K. Wójtowicz, Spór o istnienie w Matematyce (Dispute on
the Existence in Mathematics), in Polish (Warszawa, Semper, 2003), chapter 10.C.



of this assumption as far as the nature of physics is concerned. We shall,
in principle, understand this assumption in the weaker sense, but we shall
also occasionally try to see the implications of its stronger forms.

3. THE BEST OF BOTH WORLDS

If mathematics is a science of structures, and physics’ main tool in
investigating the world is by constructing its mathematical models, the
question arises in which sense the structuralist view on mathematics
transfers into our knowledge of the physical world. It is a happy circum-
stance that in order to elucidate this question, we can make use of a
recent discussion in the philosophy of physics concerning these matters.
Although this discussion was focused on a link between the structuralist
approach to physics and its realist or antirealist interpretations, it also
significantly contributed to a better understanding of the structuralist
standpoint itself.

Remarks made by Jeremy Butterfield, a philosopher of science, and
Chris Isham, a theoretical physicist, in their recent paper on quantum grav-
ity18 can serve as a good introduction to this discussion. When warning
against dangers of a far-fetched realism in interpreting physics, they claim
that every major innovation in physics changes its very subject-matter. In
their opinion, this follows from the fact that physics aims at giving a com-
plete description of the world. Both the common-sense knowledge and var-
ious scientific disciplines, such as chemistry or history, are subject to major
changes, however,

... no enthusiast of such a science or discipline is mad enough, or
imperialist enough, to believe that it gives a complete description of
its subject-matter. There are always other conjuncts to be had, typi-
cally from other disciplines.
Not so, we submit, for physics, or at least theoretical physics:
whether it by madness, imperialism, or part of what we mean by
‘physics’, physics does aspire to give just this sort of complete
description of its subject-matter. And this implies that when ‘other

18 J. Butterfield and C.J. Isham, ‘Spacetime and the Philosophical Challenge of
Quantum Gravity’, Physics Meets Philosophy at the Planck Scale, C. Callender, N. Huggett
(eds.), (Cambridge, Cambridge University Press, 2001).
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conjuncts arrive’ – i.e., new facts come to light additional to those
given by the most complete available physical description – it is
more reasonable to construe the new facts as involving a change
of subject-matter, rather than as an additional piece of doctrine
about the old subject-matter.19

To put this short: the subject-matter of physics presupposes a certain
ontology of the world. If the subject-matter changes, the assumed ontology
changes as well. And this implies that we should ‘beware scientific realism’.20

The recent discussion in philosophy of physics, exactly on this problem,
was initiated by John Worrall’s paper entitled ‘Structural Realism: The Best
of Both Worlds?’.21 He starts his analysis with the well-known argument on
behalf of scientific realism, which he calls ‘no miracles’ argument:

Very roughly, this argument goes as follows. It would be a miracle,
a coincidence on a near cosmic scale, if a theory made as many cor-
rect empirical predictions as, say, the general theory of relativity or
the photon theory of light without what that theory says about the
fundamental structure of the universe being correct or ‘essentially’
or ‘basically’ correct.22

We thus have two conflicting views: realism and anti-realism, and both
of them look for support in the progress of physics: accumulation of its
results supports realism, and discontinuities in its description of the world
supports anti-realism. Worrall asks:

Is it possible to have the best of both worlds, to account (no matter
how tentatively) for the empirical success of theoretical science
without running foul of the historical facts about theory-change?23

We should distinguish the continuity or discontinuity in the evolution
of physics at the level of empirical results and at the level of world’s descrip-
tion. There are no major problems, as far as the ‘essential cumulativity’ at
the empirical level is concerned; it is a ‘non-cumulative kind at the top the-
oretical levels’ that creates serious problems. One of the answers to these
problems could be an instrumentalist view of science, according to which
theories make ‘no real claims beyond their directly empirical conse-

19 Ibid.
20 This is the title of a subsection in the above quoted paper by Butterfield and Isham.
21 Dialectica, 43 (1989), pp. 97-124.
22 Ibid., p. 101.
23 Ibid., p. 111.



quences’, but this is exactly what Worrall wants to avoid. The solution he
proposes is called (by him) structural realism. He writes:

The role in the history of physics seems to be that, whenever a the-
ory replaces a predecessor, which has however itself enjoyed gen-
uine predictive success, the ‘correspondence principle’ applies. This
requires the mathematical equations of the old theory to re-emerge
as limiting cases of the mathematical equations of the new.24

Even if there is a discontinuity in the ‘world images’ given by the old and
new theories, there is a substantial continuity in their respective mathe-
matical structures. It ‘is not evidence for full-blown realism – but instead
only for structural realism’.25

The change from Fresnel’s wave theory to Maxwell’s electromagnetic
theory is an often discussed example in this context.26 There is certainly a
drastic ‘ontological change’ between light as a periodic disturbance in an
elastic medium (Fresnel) and light as an excitation of the ‘disembodied’
field (Maxwell). However, the continuity is recovered as soon as we look at
this ‘theory shift’ from the structuralist point of view.

Fresnel’s equations are taken over completely intact into the super-
seding theory – reappearing there newly interpreted but, as mathe-
matical equations entirely unchanged.27

The latter situation is rather exceptional in the history of physics. A more
common one, and entirely sufficient for the structuralist approach, is that
the equations of the old theory appear as limiting cases of the new theory.
Since mathematical equations describe structures, the example of Fresnel
and Maxwell theories exhibits 

cumulative growth at the structural level combined with the radical
replacement of the previous ontological ideas. It speaks, then, in
favour of a structural realism.28

24 Ibid., p. 120.
25 Ibid., p. 121.
26 It was already Poincaré who quoted this example (Science and Hypothesis, Dover,

1905, pp. 160-162) ‘to argue for a general sort of syntactic or structural realism quite dif-
ferent from the anti-realist instrumentalism which is often attributed to him’ (Worrall, op.
cit., p. 117).

27 Worrall, op. cit., p. 120.
28 Ibid.
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4. WHAT IS STRUCTURAL REALISM?

In his response to Warrall’s paper, James Ladyman29 quotes the struc-
turalist views of Bertrand Russell and Grover Maxwell who claimed that 

the objective world is composed of unobservable objects between
which certain properties and relations obtain; but we can only know
the properties and relations of these properties and relations, that is
the structure of the objective world.30

This view is qualified as an epistemological (or epistemic) structuralism.
Ladyman himself opts for something more. He argues that 

structural realism gains no advantage over traditional scientific
realism if it is understood as merely an epistemological refine-
ment of it, and that instead it ought to be developed as a meta-
physical position.31

Ladyman thinks that to cope with this problem one must change from the
syntactic, or ‘received’, view to the semantic view on scientific theories.
According to the syntactic view, scientific theory is but a system of propo-
sitions, in the ideal case, an axiomatic system suitably interpreted, where-
as according to semantic approach

theories are to be thought of as presenting structures or models
that may be used to represent systems rather than partially-inter-
preted axiomatic systems. Theories are not collections of propo-
sitions or statements, but are ‘extra-linguistic entities which may
be described or characterised by a number of different linguistic
formulations’.32

The distinction between epistemic structuralism and ontic structural-
ism was made sharp by Michael Esfeld who writes:

If physics tells us only about the way in which things at the basic
level of the world are related to each other, two different metaphys-
ical positions are open: (1) The things at the basic level have intrin-
sic properties of which we cannot gain any knowledge insofar as

29 ‘What Is Structural Realism?’, Studies in the History and Philosophy of Science 29,
1998, pp. 409-424.

30 Ibid., p. 412.
31 Ibid., p. 411.
32 Ibid., p. 416. The last sentence is a quotation from: F. Suppe, The Structure of

Scientific Theories (Chicago, University of Illinois Press, 1974), p. 221.



they are intrinsic. (2) The relations in which they stand are all there
is to the things at the basic level.33

View (1) is called the epistemic (or epistemological) structuralism; view (2)
is called the ontic (or ontological) structuralism.

In this paper, I am not so much concerned about the realism – anti-real-
ism dispute, but rather about structuralist interpretation of physics. And
from this point of view, the following conclusion should be regarded as
well-founded: From the analysis of the mathematical-empirical method of
physics it follows that physical theories are about structures of the world.
Two interpretations of this fact are possible: either structures, discovered by
physical theories, are structures of something, i.e., there is a structured
stuff, but this stuff is transparent for the method of physics (epistemic ver-
sion), or such a stuff is absent (ontic version). When adopting the second
version, we could speak about objects between which structural relations
obtain, but such objects should be understood as ‘empty places’ in a struc-
ture (empty – because devoid of any ‘intrinsic properties’). To decide
between these two versions, we should go beyond the analysis of the phys-
ical method, and appeal to metaphysical or logical reasons (for instance, to
the claim that there cannot be structural relations without the relata), or to
invoke some ‘strategic principles’ (like Ockham’s rasor to claim that ‘unde-
tectable stuff’ is not necessary).

5. REPRESENTATION INVARIANTS

An unavoidable question concerning structuralism is what should we
understand by structure. An easy answer would be that the structure presup-
posed by a given physical theory should be identified with (or somehow cor-
related to) the mathematical structure this theory employs. Unfortunately,
this answer meets the following difficulty. In physics, there are theories that
admit more than one, apparently different, mathematical formulations. For
instance, classical mechanics can be expressed in terms of the ‘action at a
distance’, in terms of variational principles, in terms of space-time curva-
ture or with the help of field theoretical methods. Quantum mechanics also
admits several representations: in terms of operators on a Hilbert space, in

33 M. Esfeld, ‘Do Relations Require Underlying Intrinsic Properties? A Physical
Argument for a Metaphysics of Relations’, Metaphysica, 4 (2003), pp. 5-26.
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terms of C*-algebras, in terms of Feynman path-integrals, or in terms of
density matrices. This creates the real problem for the traditional realism,
but can be a chance for the structuralist interpretation; namely, we can
claim that, in a case of many mathematical formulations of the same
physical theory, we have various representations of the same structure.
This was the view of Dirac and Weyl with regard to two different ‘pictures’
of quantum mechanics – the wave picture created by Schrödinger and the
matrix picture created by Heisenberg. Ladyman seems to catch the cor-
rect solution:

The idea then is that we have various representations which may
be transformed or translated into one another, and then we have
an invariant state under such transformations which represents
the objective state of affairs.34

The idea goes back to the famous ‘Erlangen Program’ in geometry, for-
mulated by Felix Klein in 1872. He classified all geometries existing at the
time according to various symmetry groups, and defined a geometry as a
theory of invariants with respect to a given group. This approach was taken
up by Weyl in his analysis of relativity theory and quantum mechanics.

For Weyl, appearances are open only for intuition (in the Kantian
sense of subjective perception) and therefore agreement is obtained
by giving objective status only to those relations that are invariant
under particular transformations.35

The situation could be summarized in the following way. There is an
abstract structure36 which admits various representations: A, B, C, say.
They are well defined mathematical structures. Let us suppose that these
mathematical structures have been used to formulate the same physical
theory, and all these formulations lead to correct empirical predictions. In
such a case, all of them must have ‘something in common’, and conse-
quently there must exist some ‘translation rules’ from A to B, from B to C,
etc. If we change from one such representations to another, something
must be preserved. Otherwise these mathematical structures could not
have been representations of the same theory. It is not important whether
we are able to identify these ‘representation invariants’, or not. The vital

34 J. Ladyman, art. cit., p. 421.
35 Ibid., p. 420.
36 Which can be interpreted in a Platonic or anti-Platonic way; this is not the subject-

matter of the present paper.



point is that they do exist. And my claim is (like that of Ladyman) that
precisely the collection of these ‘representation invariants’ is what a given
theory is about, what constitutes the ontology of this physical theory. The
situation is not unlike when the meaning of a book is defined as an invari-
ant with respect to the family of all its possible translations: indeed, the
meaning of a book is what does not change when we change from one its
(good) translation to another its (good) translation.

If we believe in the success of physics, we are entitled to claim that the
structures of the successive physical theories (in the above sense) approxi-
mate, or at least are somehow related, to the Structure of the World.
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